# A Beetled Brow

Vinnie’s brow was wrinkling so hard I could hear it over the phone. “Boltzmann, Boltzmann, where’d I hear that name before? … Got it! That’s one of those constants, ain’t it, Sy? Molecules or temperature or something?”

“The second one, Vinnie. Avagadro was the molecule counter. Good memory. Come to think of it, both Boltzmann and Avagadro bridged gaps that Loschmidt worked on.”

“Loschmidt’s thing was the paradox, right, between Newton saying events can back up and thermodynamics saying no, they can’t. You said Boltzmann’s Statistical Mechanics solved that, but I’m still not clear how.”

“Let me think of an example. … Ah, you’ve got those rose bushes in front of your place. I’ll bet you’ve also put up a Japanese beetle trap to protect them.”

“Absolutely. Those bugs would demolish my flowers. The trap’s lure draws them away to my back yard. Most of them stay there ’cause they fall into the trap’s bag and can’t get out.”

“Glad it works so well for you. OK, Newton would look at individual beetles. He’d see right off that they fly mostly in straight lines. He’d measure the force of the wind and write down an equation for how the wind affects a beetle’s flight path. If the wind suddenly blew in the opposite direction, that’d be like the clock running backwards. His same equation would predict the beetle’s new flight path under the changed conditions. You with me?”

“Yeah, no problem.”

“Boltzmann would look at the whole swarm. He’d start by evaluating the average point‑to‑point beetle flight, which he’d call ‘mean free path.’ He’d probably focus on the flight speed and in‑the‑air time fraction. With those, if you tell him how many beetles you’ve got he could generate predictions like inter‑beetle separation and how long it’d take an incoming batch of beetles to cross your yard. However, predicting where a specific beetle will land next? Can’t do that.”

“Well, another beetle might. …
Just thought of a way that Statistical Mechanics could actually be useful in this application. Once Boltzmann has his numbers for an untreated area, you could put in a series of checkpoints with different lures. Then he could develop efficiency parameters just by watching the beetle flying patterns. No need to empty traps. Anyhow, you get the idea.”

“Hey, I feel good emptying that trap, I’m like standing up for my roses. Anyway, so how does Avagadro play into this?”

“Indirectly and he was half a century earlier. In 1805 Gay‑Lussac showed that if you keep the pressure and temperature constant, it tales two volumes of hydrogen to react with one volume of oxygen to produce one volume of water vapor. Better, the whole‑number‑ratio rule seemed to hold generally. Avagadro concluded that the only way Gay‑Lussac’s rule could be general is if at any temperature and pressure, equal volumes of every kind of gas held the same number of molecules. He didn’t know what that number was, though.”

“HAW! Avagadro’s number wasn’t a number yet.”

“Yeah, it took a while to figure out. Then in 1865, Loschmidt and a couple of others started asking, “How big is a gas molecule?” Some gases can be compressed to the liquid state. The liquids have a definite volume, so the scientists knew molecules couldn’t be infinitely small. Loschmidt put numbers to it. Visualize a huge box of beetles flying around, bumping into each other. Each beetle, or molecule, ‘occupies’ a cylinder one beetle wide and the length of its mean free path between collisions. So you’ve got three volumes — the beetles, the total of all the cylinders, and the much larger box. Loschmidt used ratios between the volumes, plus density data, to conclude that air molecules are about a nanometer wide. Good within a factor of three. As a side result he calculated the number of gas molecules per unit volume at any temperature and pressure. That’s now called Loschmidt’s Number. If you know the molecular weight of the gas, then arithmetic gives you Avagadro’s number.”

“Thinking about a big box of flying, rose‑eating beetles creeps me out.”

• Thanks to Oriole Hart for the story‑line suggestion.

~~ Rich Olcott

This site uses Akismet to reduce spam. Learn how your comment data is processed.