# Where would you put it all?

Vinnie’s a big guy but he’s good at fading into the background. I hadn’t even noticed him standing in the back corner of Cathleen’s impromptu seminar room until he spoke up. “That’s a great theory, Professor, but I wanna see numbers for it.”

“Which part of it don’t you like, Vinnie?”

“You made it seem so easy for all those little sea thingies to scrub the carbon dioxide out of Earth’s early atmosphere and just leave the nitrogen and oxygen behind. I mean, that’d be a lot of CO2. Where’d they put it all?”

“That’s a reasonable question, Vinnie. Lenore, could you put your Chemistry background to work on it for us?”

“Oh, this’ll be fun, but I don’t want to do it in my head. Mr Moire, could you fire up Old Reliable for the calculations?”

“No problem. OK, what do you want to calculate?”

“Here’s my plan. Rather than work with the number of tons of carbon in the whole atmosphere, I’ll just look at the sky-high column of air sitting on a square meter of Earth’s surface. We’ll figure out how many moles of CO2 would have been in that column back then and then work on how thick a layer of carbon stuff it would make on the surface. Does that sound like a good attack, Professor?”

“Sure, but I see a couple of puzzled looks in the class. You’d better say something about moles first.”

“Hey, I know about moles. Sy and me talked about ’em when he was on that SI kick. They’re like a super dozen, right, Sy?”

“Right, Vinnie. A mole of anything is 6.02×1023 of that thing. Eggs, atoms, gas molecules, even stars if that’d be useful.”

“Back to my plan. First thing is the CO2 was in that column back when. Maria, your chart showed that Venus’ atmospheric pressure is 100 times ours and Mars’ is 1/100 ours and each of them is nearly pure CO2, right? So I’m going to assume that Earth’s atmosphere was what we have now plus a dose of CO2 that’s the geometric mean of Venus and Mars. OK, Professor?”

“That’d be a good starting point, Lenore.”

“Good. Now we need the mass of that CO2, which we can get from the weight of the column, which we can get from the air pressure, which is what?”

Every car buff in the room, in chorus — “14½ pounds per square inch.”

“I need that in kilograms per square meter.”

“Strictly speaking, pressure’s in newtons per square meter. There’s a difference between weight and force, but for this analysis we can ignore that. Keep going, Lenore.”

“Thanks, Professor. Sy?”

“Old Reliable says 10194 kg/m².”

“So we’ve got like ten-thousand kilograms of CO2 in that really tall meter-square column of ancient air. Now divide that by, um, 44 to get the number of moles of CO2. No, wait, then multiply by 1000 because we’ve got kilograms and it’s 44 grams per mole for CO2.”

“232 thousand moles. Still sounds like a lot.”

“I’m not done. Now we take that carbon and turn it into coal which is solid carbon mostly. One mole of carbon from each mole of CO2. Take the 232 thousand moles, multiply by 12 grams, no make that 0.012 kilogram per mole –“

“2786 kilograms”

“Right. Density of coal is about 2 grams per cc or … 2000 kilograms per cubic meter. So. Divide the kilograms by 2000 to get cubic meters.”

“1.39 meters stacked on that square-meter base.”

“About what I guessed it’d be. Vinnie, if Earth once had a carbon-heavy atmosphere log-halfway between Venus and Mars, and if the sea-plankton reduced all its CO2 down to coal, it’d make a layer all over the planet not quite as tall as I am. If it was chalk it’d be thicker because of the additional calcium and oxygen atoms. A petroleum layer would be thicker, too, with the hydrogens and all, but still.”

Jeremy’s nodding vigorously. “Yeah. We’ve dug up some of the coal and oil and put it back into the atmosphere, but there’s mountains of limestone all over the place.”

Cathleen’s gathering up her papers. “Add in the ocean-bottom carbonate ooze that plate tectonics has conveyor-belted down beneath the continents over the eons. Plenty of room, Vinnie, plenty of room.”

~~ Rich Olcott

# Titan’s Atmosphere Is A Gas

One year ago I kicked off these weekly posts with some speculations about how Life might exist on Saturn’s moon Titan. My surmises were based on reports from NASA’s Cassini-Huygens mission, plus some Physical Chemistry expectations for Titan’s frigid non-polar mix of liquid ethane and methane. Titan offers way more fun than that.

The environment on Titan is different from everything we’re used to on Earth. For instance, the atmosphere’s weird.Titan’s atmosphere is heavy-duty compared with Earth’s — 6 times deeper and about 1½ times the surface pressure. When I read those numbers I thought, “Huh? But Titan’s diameter is only 40% as big as Earth’s and its surface gravity is only 10% of ours. How come it’s got such a heavy atmosphere?”

Wait, what’s gravity got to do with air pressure? (I’m gonna use “air pressure” instead of “surface atmospheric pressure” because typing.) Earth-standard sea level air pressure is 14.7 pounds of force per square inch. That 14.7 pounds is the total weight of the air molecules above each square inch of surface, all the way out to space.

(Fortunately, air’s a hydraulic fluid so its pressure acts on sides as well as tops. Otherwise, a football’s shape would be even stranger than it is.)

Newton showed us that weight (force) is mass times the the acceleration of gravity. Gravity on Titan is 1/10 as strong as Earth’s, so an Earth-height column of air on Titan should weigh about 1½ pounds.

But Titan’s atmosphere (measured to the top of each stratosphere) goes out 6 times further than Earth’s. If we built out that square-inch column 6 times taller, it’d weigh only 9 pounds on Titan, well shy of the 22 pounds the Huygens lander measured. Where does the extra weight come from?

My first guess was, heavy molecules. If gas A has molecules that are twice as heavy as gas B’s, then a given volume of A would weigh twice as much as the same volume of B. An atmosphere composed of A will press down on a planet’s surface twice as hard as an atmosphere composed of B.

Good guess, but doesn’t apply. Earth’s atmosphere is 78% N2 (molecular weight 28) and 21% O2 (molecular weight 32) plus a teeny bit of a few other things. Their average molecular weight is about 29. Titan’s atmosphere is 98% N2 so its average molecular weight (28) is virtually equal to Earth’s. So no, those tarry brown molecules that block our view of Titan’s surface aren’t numerous enough to account for the high pressure.

My second guess is closer to the mark, I think. I remembered the Ideal Gas Law, the one that says, “pressure times volume equals the number of molecules times a constant times the absolute temperature.” In symbols, P·V=n·R·T.

Visualize one gas molecule, Fred, bouncing around in a cube sized to match the average volume per molecule, V/n=R·T/P. If Fred goes outside his cube in any direction he’s likely to bang into an adjacent molecule. If Fred has too much contact with his neighbors they’ll all stick together and become a liquid or solid.

The equation tells us that if the pressure doesn’t change, the size of Fred’s cube rises with the temperature. Just for grins I calculated the cube’s size for standard Earth conditions: (22.4 liters/mole)×(1 cubic meter/1000 liters)×(1 mole/6.02×1023 molecules)=37.2×10-27 cubic meter/molecule. The cube root of that is the length of the cube’s edge — 3.3 nanometers, about 8.3 times Fred’s 0.40-nanometer diameter.

Earth-standard surface temperature is about 300°K (absolute temperatures are measured in Kelvins). Titan’s surface temperature is only 94°K. On Titan that cube-edge would be 8.3*(94/300)=2.6 times Fred’s diameter — if air pressure were Earth-standard.

But really Titan’s air pressure is 1.5 times higher because its column is so tall and contains so much gas. The additional pressure squeezes Fred’s cube-edge down to 2.6*(1/1.5)=1.8 times his diameter. Still room enough for Fred to feel well-separated from his neighbors and continue acting like a proper gas.

The primary reason Titan’s atmosphere is so dense is that it’s chilly up there. Also, there’s a lot of Freds.

~~ Rich Olcott

– For the technorati… The cube-root of the Van der Waals volume for N2. And yeah, I know I’m almost writing about Mean Free Path but I think the development’s simpler this way.