# Small, yes, but how small?

Another quiet summer afternoon in the office. As I’m finishing up some paperwork I hear a fizzing sound I’d not heard in a while. “Hello, Anne, welcome back. Where’ve you been?”

Her white satin looks a bit speckled somehow but her voice still sounds like molten silver. “I’m not sure, Sy. That’s what I’ve come to you about.”

“Well, after we figured out that I can sort of ‘push’ myself across time and probability variation I realized that the different ‘pushes’ felt like different directions, kind of. When I go backward and forward in time it feels a little like falling backward or forward. Not really, but that’s the best way I can describe it. Moving to a different probability is a little like going left or right. So I wondered, what about up and down?”

“And I gather you tried that.”

“Sure, why not? What good’s a superpower if you don’t know what you can do with it? When I ‘push’ just a little upward thIS HAPPENS.”

“Whoa, watch out for the ceiling fan! Shrink back down again before you break the furniture or something.”

“Oh, I won’t, I’ve learned to be careful when I resize. Good thing I was outside and all by myself the first time I tried it. Took some practice to control how how much my size changes by how light or heavy I ‘pushed’.”

“I think I can see where this is going.”

“Mm-hm, it’s good to know what the limits are, right? I’ve got a pretty good idea of what would happen if I got huge. What I want to know is, what’ll I be getting into if I try ‘pushing’ down as hard as I can?”

“Kinda depends on how far down you go. I’m assuming your retinas scale their sensitivity with your size. When you get bigger do green things look blue and yellow things look green and so forth?”

“Yeah, orange juice had this weird yellow color. Tasted OK, though.”

“Right. So when you get smaller the colors you perceive will shift the other way, to shorter wavelengths — at first, yellow things will look red, blue things will look yellow and you’ll see ultraviolet as blue. When you get a thousand times smaller than normal, most things will look black because there’s not much X-ray illumination unless you’re close to a badly-shielded Crookes tube.”

“Good thing this ‘push’ ability also gave me some kind of extra feel-sense that’s not sight. Sometimes when I try to ‘push’ it ‘feels’ blocked until I move around a little. After the ‘push’ I see a wall or something I would have jumped into.”

“That’s a relief. I was wondering how you’d navigate when you’re a million times smaller than normal, at the single-cell level, or a million times smaller than that when you’d be atom-sized.”

“Then what comes?”

“Mmm… one more factor of a thousand would get you down to about the size of an atomic nucleus, but below that things get real fuzzy. It’s hard to get experimental data in the sub-nuclear size range because any photon with a wavelength that short is essentially an extremely-high-energy gamma ray, better at blowing nuclei apart than measuring them. Theory says you’d encounter nuclei as roiling balls of protons and neutrons, but each of those is a trio of quarks which may or may not be composed of even smaller things.”

“Is that the end of small?”

“Maybe not. Some physicists think space is quantized at scales near 10—35 meter. If they’re wrong then there’s no end.”

“Quantized?”

Quantized means something is measured out in whole numbers. Electric charge is quantized, for instance, because you can have one electron, two electrons, and so on, but you can’t have 1½ electrons. Some physicists think it’s possible that space itself is quantized. The basic idea is to somehow label each point in space with its own set of whole numbers.  There’d be no vacant space between points, just like there’s no whole number between two adjacent whole numbers.”

“So how small can I get?”

“Darned if I know.”

~~ Rich Olcott

Thanks to Jerry Mirelli for his thoughts that inspired this post and the next.

# Toccata for A Rubber Ruler

“How the heck do they know that?”

“Know what, Vinnie?”

“That the galaxy they saw with that gravitational lens is 13 billion years old?  I mean, does it come with a birth certificate, Cathleen?”

“Mm, it does, sort of — hydrogen atoms.  Really old hydrogen atoms.”

“Waitaminit.  Hydrogen’s hydrogen — one proton, one electron per atom.  They’re all the same, right?  How do you know one’s older than another one?”

“Because they look different.”

“How could they look different when they’re all the same?”

“Let me guess, Cathleen.  These old hydrogens, are they far far away?”

“On the button, Sy.”

“What where they’re at got to do with it?”

“It’s all about spectroscopy and the Hubble constant, Vinnie.  What do you know about Edwin Hubble?”

“Like in Hubble Space Telescope?  Not much.”

“Those old atoms were Hubble’s second big discovery.”

“Sorry, classroom habit.  His first big discovery was that there’s more to the Universe than just the Milky Way Galaxy.  That directly contradicted Astronomy’s Big Names.  They all believed that the cloudy bits they saw in the sky were nebulae within our galaxy.  Hubble’s edge was that he had access to Wilson Observatory’s 100-inch telescope that dwarfed the smaller instruments that everyone else was using.  Bigger scope, more light-gathering power, better resolution.”

“Hubble won.”

“Yeah, but how he won was the key to his other big discovery.  The crucial question was, how far away are those ‘nebulae’?  He needed a link between distance and something he could measure directly.  Stellar brightness was the obvious choice.  Not the brightness we see on Earth but the brightness we’d see if we were some standard distance away from it.  Fortunately, a dozen years earlier Henrietta Swan Leavitt found that link.  Some stars periodically swing bright, then dim, then bright again.  She showed that for one subgroup of those stars, there’s a simple relationship between the star’s intrinsic brightness and its peak-to-peak time.”

“So Hubble found stars like that in those nebulas or galaxies or whatever?”

“Exactly.  With his best-of-breed telescope he could pick out individual variable stars in close-by galaxies.  Their fluctuation gave him intrinsic brightness.  The brightness he measured from Earth was a lot less.  The brightness ratios gave him distances.  They were a lot bigger than everyone thought.”

“Ah, so now he’s got a handle on distance.  Scientists love to plot everything against everything, just to see, so I’ll bet he plotted something against distance and hit jackpot.”

“Well, he was a bit less random than that, Sy.  There were some theoretical reasons to think that the Universe might be expanding.  The question was, how fast?  For that he tapped another astronomer’s results.  Vesto Slipher at Lowell Observatory was looking at the colors of light emitted by different galaxies.  None had light exactly like our Milky Way’s.  A few were a bit bluer, but most were distinctly red-shifted.”

“Like the Doppler effect in radar?  Things coming toward you blue-shift the radar beam, things going away red-shift it?”

“Similar to that, Vinnie, but it’s emitted light, not a reflected beam. To a good approximation, though, you can say that the red shift is proportional to the emitting object’s speed towards or away from us.  Hubble plotted his distance number for each galaxy he’d worked on, against Slipher’s red-shift speed number for the same galaxy.  It wasn’t the prettiest graph you’ve ever seen, but there was a pretty good correlation.  Hubble drew the best straight line he could through the points.  What’s important is that the line sloped upward.”

“Lemme think … If everything just sits there, there’d be no red-shift and no graph, right?  If everything is moving away from us at a steady speed, then the line would be flat — zero slope.  But he saw an upward slope, so the farther something is the faster it’s going further from us?”

“Bravo, Vinnie.  That’s the expansion of the Universe you’ve heard about.  Locally there are a few things coming toward us — that’s those blue-shifted galaxies, for instance — but the general trend is away.”

“So that’s why you say those far-away hydrogens look different.  By the time we see their light it’s been red-shifted.”

“93% redder.”

~~ Rich Olcott