Dark Passage

Change-me Charlie’s not giving up easily. “You said that NASA picture did three things, but you only told us two of them — that dark matter’s a thing and that it’s separate from normal matter. What’s the third thing? What exactly is in that picture? Does it tell us what dark matter is?”

The Bullet Cluster ( 1E 0657-56 )

Physicist-in-training Newt’s ready for him. “Not much of a clue about what dark matter is, but a good clue about how it behaves. As to what’s in the picture, we need some background information first.”

“Go ahead, it’s not dinner-time yet.”

“First, this isn’t two stars colliding. It’s not even two galaxies. It’s two clusters of galaxies, about 40 all together. The big one on the left probably has the mass of a couple quintillion Suns, the small one about 10% of that.”

“That’s a lot of stars.”

“Oh, most of it’s definitely not stars. Maybe only 1-2%. Those stars and the galaxies they form are embedded in ginormous clouds of proton-electron plasma that make up 5-20% of the mass. The rest is that dark matter you don’t like.”

“Quadrillions of stars are gonna make a super-super-nova when they collide!”

“Well, no. That doesn’t even happen when two galaxies collide. The average distance between neighboring stars in a galaxy is 200-300 times the diameter of a star so it’s unlikely that any two of them will come even close. Next level up, the average distance between galaxies in a cluster is about 60 galaxy diameters or more, depending. The galaxies will mostly just slide past each other. The real colliders are the spread-out stuff — the plasma clouds and of course the dark matter, whatever that is.”

Astronomer-in-training Jim cuts in. “Anyway, the collision has already happened. The light from this configuration took 3.7 billion years to reach us. The collision itself was longer ago than that because the bullet’s already passed through the big guy. From that scale-bar in the bottom corner I’d say the centers are about 2 parsecs apart. If I recall right, their relative velocity is about 3000 kilometers per second so…” <poking at his smartphone> “…the peak intersection was about 700 million years earlier than that. Call it 4.3 billion years ago.”

“So what’s with the cotton candy?”

Newt looks puzzled. “Cotton… oh, the pink pixels. They’re markers for where NASA’s Chandra telescope saw X-rays coming from.”

“What can make X-rays so far from star radiation that could set them going?”

“The electrons do it themselves. An electron emits radiation every time it collides with another charged particle and changes direction. When two plasma clouds interpenetrate you get twice as many particles per unit volume and four times the collision rate so the radiation intensity quadruples. There’s always some X-radiation in the plasma because the temperature in there is about 8400 K and particle collisions are really violent. The Chandra signal pink shows the excess over background.”

“The blue in the Jim’s picture is supposed to be what, extra gravity?”

“Basically, yeah. It’s not easy to see from the figure, but there are systematic distortions in the images of the background galaxies in the blue areas. Disks and ellipsoids appear to be bent, depending on where they sit relative to the clusters’ centers of mass. The researchers used Einstein’s equations and lots of computer time to work back from the distortions to the lensing mass distributions.”

“So what we’ve got is a mostly-not-from-stars gravity lump to the left, another one to the right, and a big cloud in the middle with high-density hot bits on its two sides. Something in the middle blew up and spread gas around mostly in the direction of those two clusters. What’s that tell us?”

“Sorry, that’s not what happened. If there’d been a central explosion the excess to the right would be arc-shaped, not a cone like you see. No, this really is the record of one galaxy cluster bursting through another one. Particle-particle friction within the plasma clouds held them back while the embedded galaxies and dark matter moved on.”

“OK, the galaxies aren’t close-set enough for them to slow each other down, but wouldn’t friction in the dark matter hold things back, too?”

“Now that’s an interesting question…”

~~ Rich Olcott

Zwicky Too Soon

Big Vinnie barrels into the office, again. “Hey, Sy, word is you been short-changing Fritz Zwicky. What’s the story?”

“Hey, I never even met the guy.  He died in 1974.  How could I do him a bad deal?”

“Not giving him full credit.  I read an article about him.  He talked about ‘dark matter’ almost fifty years before Vera Rubin.”

“You’ve got a point there.  Like Vera Rubin he had a political problem, but his was quite different than hers.”

“Political?  I thought all you had to do was be right.”

“No, you have to be right and you have to have people willing to spend time validating or refuting your claims.  Rubin wasn’t a self-advertiser, so it took a while for people to realize why her results were important.  They did look at them, though, and they did give her credit.  Zwicky’s was a different story.”

“Wasn’t he right?”

“Sometimes right, often wrong.  Thing was, he generated too many ideas for people to cope with.  Worse, he was one of those wide-ranging intellects who adds one plus one to make two.  Trouble was, Zwicky got his ones from different specialties that don’t normally interact.  When people didn’t immediately run with one of his claims he took it personally and lashed out, publicly called ’em fools or worse.  Never a good tactic.”

“Gimme a f’rinstance.”

“OK.  Early 1930’s, Zwicky’s out in the still-raw wilds of California, practically nothing out there but movie studios and oil wells, using a manual blink-comparator like the one Clyde Tombaugh used about the same time to find Pluto.  He’s scanning images taken with Palomar’s new wide-angle telescope to search out novae, stars that suddenly get brighter.  He’s finding dozens of them but a few somehow get orders of magnitude brighter than the rest.  He and his buddy Walter Baade call the special ones ‘supernovae.'”

“Ain’t that novas?”

“Novae — we’re being proper astronomers here and it’s a Latin word.  Anyway, Zwiky’s trying to figure out where a supernova’s enormous luminosity comes from.  He got his start in solid-state physics and he still keeps up on both Physics and Astronomy.  Just a year earlier, James Cavendish over in atomic physics had announced the discovery of the neutron.  Zwicky sees that neutrons are the solution to his problem — gravity can pack together no-charge neutrons to a much higher density than it can pack positive-charge protons.  He proposes that a supernova happens when a big-enough star uses up its fuel and collapses to the smallest possible object, a neutron star.  Furthermore, he says that the collapse releases so much gravitational energy that supernovae give off cosmic rays, the super-high-energy photons that were one of the Big Questions of the day.”

“Sounds reasonable, I suppose.”

“Well, yeah, now.  But back then most astronomers had never heard of neutrons.  To solve at a stroke both cosmic rays and supernovae, using this weird new thing called a neutron, and with the proposal coming from somewhere other than Europe or Ivy League academia — well, it was all too outlandish to take seriously.  No-one did, for decades.”

“He didn’t like that, huh?”Zwicky inspecting dark matter

“No, he did not.  And he railed about it, not only in private conversations but in papers and in the preface to one of the two galaxy catalogs he published.  Same thing with galaxy clusters.”

“Wait, you wrote that Rubin found clusters.”

“I did and she did.  Actually, I wrote that she confirmed clustering.  We knew for 150 years that galaxies bunch together in our 2-D sky, but it took Zwicky’s measurements to group the Coma Cluster galaxies in 3-D.  Problem was, they were moving too fast.  If star gravity were the only thing holding them together they should have scattered ages ago.”

“Dark matter, huh?”

“Yup, Zwicky claimed invisible extra mass bound the cluster together.  More Zwicky outlandishness and once again his work was ignored for years.”

“Even though he was right.”

“Mm-hm.  But he could be wrong, too.  He didn’t like Hubble’s expanding Universe idea so he came up with a ‘tired light’ theory to explain the red-shifts.  He touted that idea heavily but there was too much evidence against it.”

“One of those angry ‘lone wolf’ scientists.”

“And bitter.”

~~ Rich Olcott