Intermezzo for Rubber Ruler

¡Dios mio!  Vera Rubin confirms that galaxies cluster and no-one thinks that’s important?”

“That was in the 1950s, Maria.  Her report was just a degree thesis and a minor paper.  Her advisor, who should have pushed her case but didn’t, was a cosmologist instead of an observational astronomer.  At the time, many considered cosmology to be just barely not metaphysics.  What she reported didn’t bear on what the astronomers of the day considered the Big Questions, like how do stars work and is the expansion of the Universe accelerating.”

“That’s political, ¿no?

“That’s part of how science works — if observations  look important, other people work to invalidate them.  If results look important, other people work to rebut them.  The claims that are validated and can’t be rebutted survive.  But the verifiers and rebutters only work on what their colleagues consider to be important.  Deciding what’s important is a political process.  The history of science is littered with claims that everyone dismissed as unimportant until decades later when they suddenly gained the spotlight.  Galaxy clustering is one of those cases.  All things considered, I think clustering’s initial obscurity had more to do with the current state of the science than with her being a woman.”

“So how did Vera Rubin react to the nada?”

“She went back to her observing, which is what she was happiest doing anyway.  Especially when computers came along and her long-time colleague Kent Ford built a spiffy electronic spectrograph.  No more gear-calculating all day for a single number, no more peering down that measuring engine microscope tube.  Results came more quickly and she could look at larger assemblies out there in the Universe.  Which led to her next breakthrough.”

Rubin inspecting metagalaxy
“Dark matter, yes?”

“No, that came later.  This one was about streams.”

“Of water?”

“Of galaxies.  At the time, most astronomers thought that galaxy motion was a solved problem.  You know about Hubble Flow?”

“No.  Is that the streaming?”

“It’s the background for streaming.  Hubble Flow is the overall expansion of the Universe, all the galaxies moving away from each other.  But it’s not uniform motion.  We know, for instance, that the Andromeda and Milky Way galaxies are going to collide in about five billion years.  Think of galaxies like gas molecules in an expanding balloon.  On the average every molecule gets further away from its neighbors, but if you watched an individual molecule you’d see it bouncing back and forth.  Astronomers call that extra movement ‘peculiar motion.'”

“‘Peculiar’ like ‘odd?'”

“It’s an old-fashioned use of the word — ‘peculiar’ like ‘distinctive’ or ‘unique.’  Anyway, the community’s general notion was you could account for galaxy movement as a simple random motion laid on top of the Hubble Flow.”

“Again Occam’s Razor cuts too close?”

“For sure.  Rubin and Ford looked at data for almost a hundred distant galaxies all over the sky.  Not just any galaxies.  They carefully picked a set of one kind of galaxy, known in the trade as ScI, all of which have about the same ratio of absolute brightness to diameter.  Measure the diameter, you get the absolute brightness.  A distant light appears dimmer as the square of its distance.  Measure the brightness we see on Earth, make a few corrections, and the inverse square law lets you calculate how far the galaxy is from here.  Then Hubble’s distance-speed law tells you how fast you expect the galaxy to be receding.  That’s half of it.”

“OK…?”

“The other half is how fast the galaxies are really moving.  For that Rubin and Ford turned to spectroscopy.  From the red/blue-shift of each galaxy they had an independent measure of its speed relative to us.  Guess what?  They didn’t match the Hubble Flow speeds.”

Galactic velocity anisotropy

Adapted from
Astronomical Journal 81, 719-37 (1976).

“Faster or slower?”

“Both!  In one half the sky these distant galaxies appear to be fleeing faster than the Hubble Flow, and in the other half they’re going slower.  The simplest explanation is that our entire Local Group is streaming towards the ‘slowest’ part of the sky.  Rubin and company had discovered a large-scale, third kind of galactic motion — rivers of galaxies streaming through the Universe.”

“Did the people get excited?”

“Not for a while, of course.”

~~ Rich Olcott

Advertisements

Squeezing past Newton’s infinity

One of the most powerful moments in musical theater — Philip Quast Quastin his Les Miz role of Inspector Javert, praising the stars for the steadfastness and reverence for law that they signify for him.  The performance is well worth a listen.

Javert’s certitude came from Newton’s sublimely reliable mechanics — the notion that every star’s and planet’s motion is controlled by a single law, F~(1/r2).  The law says that the attractive force between any pair of bodies is inversely proportional to the square of the distance between their centers.  But as Javert’s steel-clad resolve hid a fatal spark of mercy towards Jean Valjean, so Newton’s clockworks hold catastrophe at their axles.

Newton’s gravity law has a problem.  As the distance approaches zero, the predicted force approaches infinity.  The law demands that nearby objects accelerate relentlessly at each other to collide with infinite force, after which their combined mass attracts other objects.  In time, everything must collapse in a reverse of The Big Bang.

Victor Hugo wrote Les Misérables about 180 years after Newton published his Principia.  A decade before Hugo’s book, Professeur Édouard Roche (pronounced rōsh) solved at least part of Newton’s problem.

Roche realized that Newton had made an important but crucial simplification.  Early in the Principia, he’d proven that for many purposes you can treat an entire object as though all of its mass were concentrated at a single point (the “center of mass”).  But in real gravity problems every particle of one object exerts an attraction for every particle of the other.

That distinction makes no difference when the two objects are far apart.  However, when they’re close together there are actually two opposing forces in play:

  • gravity, which preferentially affects the closest particles, and
  • tension, which maintains the integrity of each structure.
contact_binary_1

Binary star pair demonstrating Roche lobes, image courtesy of Cronodon.com

Roche noted that the gravity fields of any pair of objects must overlap.  There will always be a point on the line between them where a particle will be tugged equally in either direction.  If two bodies are close and one or both are fluid (gases and plasmas are fluid in this sense), the tension force is a weak competitor.  The partner with the less intense gravity field will lose material across that bridge to the other partner. Binary star systems often evolve by draining rather than collision.

Now suppose both bodies are solid.  Tension’s game is much stronger.  Nonetheless, as they approach each other gravity will eventually start ripping chunks off of one or both objects.  The only question is the size of the chunks — friable materials like ices will probably yield small flakes, as opposed to larger lumps made from silicates and other rocky materials.  Roche described the final stage of the process, where the less-massive body shatters completely.  The famous rings of Saturn and the less famous rings of Neptune, Uranus and Jupiter all appear to have been formed by this mechanism.

Roche was even able to calculate how close the bodies need to be for that final stage to occur. The threshold, now called the Roche Limit, depends on the size and mass of each body. You can get more detail here.

Klingon3And then there’s spaghettification.  That’s a non-relativistic tidal phenomenon that occurs near an extremely dense body like a neutron star or a black hole.  Because these objects pack an enormous amount of mass into a very small volume, the force of gravity at a close-in point is significantly greater than the force just a little bit further out. Any object, say a Klingon Warbird that ignored peril markings on a space map (Klingons view warnings as personal challenges), would find itself stretched like a noodle between high gravity on the side near the black hole and lower gravity on the opposite side.  (In this cartoon, notice how the stretching doesn’t care which way the pin-wheeling ship is pointed.)

Nature abhors singularities.  Where a mathematical model like Newton’s gravity law predicts an infinity, Nature generally says, “You forgot something.”  Newton assumed that objects collide as coherent units.  Real bodies drain, crumble, or deform to slide together.  Look to the apparent singularities to find new physics.

~~ Rich Olcott