The Big Splash? Maybe.

You’ve not seen half of it, Mr Feder.  Mars has the Solar System’s tallest volcano, most massive volcano, biggest planetary meteor strike, deepest and longest  canyon…”

“Wait, kid, I’ve been to the Grand Canyon.  Thing is … BIG!  What’d they say?  A mile deep, 18 miles wide, 250 miles long.  No way Mars can beat that.”

“Valles Marineris is 4½ miles deep, 120 miles wide and 2500 miles long.  The Grand Canyon meanders, packing its length into only 150 miles of bee-line distance.  Marineris stretches straight as a string.  No river carved that formation, but the planetologists can’t agree on what did.”

Labeled Mars map 2 420
Mars map from NASA/JPL/GSFC

“They got evidence, don’t they?”

“Not enough.  Different facts point in different directions and no overall theory has won yet.  Most of it has to do with the landforms.  Start with the Tharsis Bulge, big as a continent and rising kilometers above Mars’ average altitude.  Near the Bulge’s highest point, except for the volcanoes, is a fractured-looking region called Noctis Labyrinthus.  Starting just west of  the Labyrinth a whole range of wrinkly highlands and mountains arcs around south and then east to point towards the eastern end of Marineris.  Marineris completes the arc by meeting the Labyrinth to its west.  Everything inside that arc is higher than everything else around it.  Except for the volcanoes, of course.”

“Looks like something came up from underneath to push all that stuff up.”

“Mm-hm, but we don’t know what, or what drove it, or even how fast everything happened.  There are theories all over the place”

“Like what?”

“Well, maybe it’s upwellng from a magma hotspot, like the one under the Pacific that’s been creating Hawaiian Islands one at a time for the past 80 million years.  Some people think the upwelling mostly lifted the existing crust like expanding gas bubbles push up the crust of baking bread.  Other people think that the upwelling’s magma broke through the crust to form enormous lava flows that covered up whatever had been there before.”

“You said ‘maybe.'”

“Yeah.  Another group of theories sees a connection between Tharsis and Hellas Basin, which is almost exactly on the other side of the planet.  Hellas is the rock-record of a mega-sized meteorite strike, the third largest confirmed one in the Solar System.  Before you ask, the other two are on the Moon.  Like I said, it’s a group of theories.  The gentlest one, if you can call it that, is that energy from the impact rippled all around the planet to focus on the point opposite the impact.  That would have disrupted the local equilibrium between crustal weight and magma’s upward pressure.  An imbalance like that would encourage uplift, crustal cracking and, ultimately, Valles Marineris.”

“Doesn’t sound very gentle.”

“It wouldn’t have been but it might even have been nastier.  Another possibility is that the meteorite may not have stopped at the crust.  It could have hit hard enough, and maybe with enough spin, to drill who knows how far through the fluid-ish body of the planet, raising the Bulge just by momentum and internal slosh.  Worst case, some of Tharsis’ rock might even have come from the intruder.”

Realistic Orange-red Liquid Splash Vector
Adapted from an image by Vecteezy

“Wow, that would have been a sight to see!”

“Yeah, from a distance.  Any spacecraft flying a Mars orbit would be in jeopardy from rock splatter.  We’ve found meteors on Earth that we know originated on Mars because they have bubbles holding trapped gas that matches the isotope signature of Martian atmosphere.  A collision as violent as the one I just described could certainly have driven rocky material past escape velocity and on its way to us.  Oh, by the way and speaking of sights — you’d be disappointed if you actually visited Valles Marineris.”

“How could anything that ginormous be a disappointment?”

“You could look down into it but you probably couldn’t see the far side.  Mars is smaller than Earth and its surface curves downward more rapidly.  Suppose you stood on one side of the valley’s floor where it’s 4 miles deep.  The opposite wall, maybe 100 miles away, would be beyond your 92-mile horizon limit for an object that tall.”

“Aw, phooey!”

~~ Rich Olcott

Advertisements

Holes in The Ground — Big Ones

Al’s stacking chairs on tables, trying to close his coffee shop, but Mr Richard Feder (of Fort Lee, NJ) doesn’t let up on Jim.  “What’s all this about Gale Crater or Mount Sharp that Curiosity‘s running around?  Is it a crater or a mountain?  How about it’s a volcano?  How do you even tell the difference?”

That’s a lot of questions but Jim’s got game.  “Gale is an impact crater, about three and a half billion years old.  The impacting meteorite must have hit hard, because Mount Sharp’s in the middle of Gale.”

Mud drop
Adapted from a photo
by Davide Restivo, Aarau, Switzerland
[CC BY-SA 2.0] via Wikimedia Commons
“How’s that follow?”

“Have you ever watched a rain drop hit a puddle?  It forces the puddle water downward and then the water springs back up again to form a peak.  The same general process  happens when a meteorite hits a rocky surface except the solid peak doesn’t flatten out like water does.  We know that’s the way many meteor craters on the Moon and here on Earth were formed.  We’re pretty sure it’s what happened at Gale — the core of Mount Sharp (formal astronomers call it Aeolis Mons) is probably that kind of peak.”

“Only the core?  What about the rest of it?”

“That’s what Curiosity has been digging into.”  <I have to smile — Jim’s not one to do puns on purpose.>  “The rover’s found evidence that the core’s wrapped up in lots of sedimentary clays, sulfates, hematites and other water-derived minerals of a sort that wouldn’t be there unless Gale had once been a lake like Oregon’s Crater Lake.  That in turn says that Mars once had liquid water on its surface.  That’s why everyone got so excited when those results came in.”

“Oregon’s Crater Lake was from a meteorite?”

“Oops, bad example.  No, that one’s a water-filled volcanic caldera.”

“How do you know?  Any chance its volcano will blow?”

“The best evidence, of course, is the mineralogy.  Volcanoes are made of igneous rocks — lava, tefra and everything in between.  Impact craters are made of whatever was there when the meteorite hit, although the heat and the pressure spike transform a lot of it into some metamorphic form.”

“But you can’t check for that on Mars or the Moon.”

“Mostly not, you’re right, so we have to depend on other clues.  Most volcanoes, for instance, are above the local landscape; most impact structures are below-level.  There are other subtler tests, like the pattern and distance that ejecta were thrown away from the event.  In general we can be 95-plus percent sure whether we’re looking at a volcano or an impact crater.  And no, it won’t any time soon.”

“What won’t do what?”

“You asked whether Crater Lake’s volcano will erupt.  Mount Mazama blew up 7700 years ago and it’s essentially been dormant ever since.”

“There’s some weasel-wording back there — most volcanoes do this, most impacts do that.  What about the exceptions?”

“Those generally have to do with size.  The really enormous features are often hard to even recognize, much less classify.  On Mars, for instance the Northern Lowlands region is significantly smoother than most of the rest of the planet.  Some people think that’s because it’s a huge lava flow that obliterated older impact structures.  Other people think the Lowlands is old sea bottom, smooth because meteorites would have splashed water instead of raising rocky craters.”

Labeled Mars map 420
Mars map from NASA/JPL/GSFC

“I’ll bet ocean.”

“There’s more.  You’ve heard about Olympus Mons on Mars being the Solar System’s biggest volcano, but that’s really only by height.  Alba Mons lies northeast of Olympus and is far huger by volume — 600 million cubic miles of rock but it’s only 4 miles high.  Average slope is half a degree — you’d never notice the upward grade if you walked it.  Astronomers thought Alba was just a humungous plain until they got detailed height data from satellite measurements.”

“The other one’s more than 4 miles high?”

“Oh, yeah.  Olympus Mons rises about 13.5 miles from the base of its surrounding cliffs.  That’s more than the jump from the bottom of the Mariana Trench to the top of Mount Everest.”

“Things on Mars are big, alright.”

~~ Rich Olcott