Why Is Mars Red But Earth Is Blue?

The grad students’ Crazy Theory Contest event at Al’s coffee shop is breaking up.  Amanda’s flaunting the Ceremonial Broom she won with her ‘Spock and the horseshoe crabs‘ theory.  Suddenly a voice from behind me outroars the uproar.  “Hey, Mars guy, I got questions.”

Jim looks up and I look around.  Sure enough, it’s Mr Richard Feder.  I start with the introductions but he barrels right along.  “People call Mars the Red Planet, but I seen NASA pictures and it’s brown, right?  All different kinds of brown, with splotches.  There’s even one picture with every color in the rainbow.  What’s with that and what color is Mars really?”

Jim’s a newly-fledged grad student so I step in to give him a chance to think.  “That rainbow picture, Mr Feder, did it have a circular purple spot about a third of the way up from the bottom and was it mostly blue along the top?”

“Yeah, sounds about right.”

“That’s a NASA topographic map, color-coded for relative elevations, purple for low areas to red high-up.  The blue area is the Northern Lowlands surrounding the North Pole, and that purple spot is Hellas Basin, a huge meteor crater billions of years old.  It’s about 5 miles deep which is why they did it in purple.  The map colors have nothing to do with the color of the planet.”

“About your question, Mr …. Feder is it?”

“Yeah, kid, Richard Feder, Fort Lee, New Jersey.”

“Good to meet you, sir.  The answer to your question is, ‘It depends.’  Are you looking down from space or looking around on the surface?  And where are you looking?  Come to think of it, when are you looking?”

“All I’m asking is, is it red or not?  Why make it so complicated?”

“Because it is complicated.  A few months ago Mars had a huge dust storm that covered the whole planet.  At the surface it was far darker than a cloudy moonless night on Earth.  From space it was a uniform butterscotch color, no markings at all.”

“OK, say there’s no dust in the air.”

“Take away all the floating dust and it almost wouldn’t be Mars any more.  The atmosphere’s only 1% of Earth’s and most of that is CO2 — clear and colorless.”

“So what would we see looking down at the surface?”

“Uh … you’re from New Jersey, right?  What color is New Jersey’s surface?”

<a little defensively> “We got a lot of trees and farms, once you get away from all the buildings along the coast and the Interstates, so it’s green.”

“Mars doesn’t have trees, farms, buildings or roads.  What color is New Jersey underneath all that?”

“The farmland soil’s black of course, and the Palisades cliffs near me are, too.  Down-state to the south we got sand-colored sand on the beaches and clay-colored clay.”

“Mars has clay, the Curiosity rover confirmed that, and it’s got basalt like your cliffs, but it has no soil.”

“Huh? How could it not have soil?  That’s just ground-up rocks, right, and Mars has rocks.”

“Soil’s way more then that, Mr Feder.  If all you have is ground-up rocks, it’s regolith.  The difference is the organic material that soil has and regolith doesn’t — rotted vegetable matter, old roots, fungus, microorganisms.  All that makes the soil black and helps it hold moisture and generally be hospitable to growing things.  So far as we know, Mars has none of that.  We’ve found igneous, sedimentary and metamorphic rocks just like on Earth; we’ve found clays, hematites and gypsum that had to have been formed in a watery environment.  But so far no limestone — no fossilized shelly material like that would indicate life.”

“What you’re saying is that Mars colors look like Earth colors except no plants.  So why do astronomers call Earth a ‘pale blue marble’ but Mars is ‘the red planet’?”

“Earth looks pale blue from space.  The blue is the dominant color reflected from the 70% of Earth’s surface that’s ocean-covered.  It’s pale because of white light reflected from our clouds of water vapor.  Mars lacks both.  What Mars does have is finely-divided iron oxide dust, always afloat above the surface.”

“Mars looks red ’cause it’s atmosphere is rusty?”

“Yessir.”Earth and Mars

~~ Rich Olcott


Helios versus Mars, Planetary Version

Al waves me over the moment I step through the door of his coffee shop.  “Sy, ya gotta squeeze into the back room.  The grad students are holding another Crazy Theory contest and they’re having a blast.  I don’t know enough science to keep up with ’em but you’d love it.  Here’s your coffee.”

“Thanks, Al.  I’ll see what’s going on.”

The Crazy Theory contest is a hallowed Al’s Coffee Shop tradition — a “seminar” where grad students present their weirdest ideas in competition.  Another tradition (Al is strong on this one) is that the night’s winner has to sweep up the thrown spitballs and crumpled paper napkins at the end of the presentations.  I weave my way in just as the girl at the mic finishes her pitch with, “… and that’s why Spock and horseshoe crabs both have green blood!”

Some in the crowd start chanting “Amanda!  Amanda!  Amanda!”  She’s already reaching for the Ceremonial Broom when Jim steps up to the mic and waves for quiet.  “Wanna hear how the Sun oxidized Mars and poisoned it for us?”

Helios and Mars
Helios and Mars
Mars image adopted from photo by Mark Cartwright
Creative Commons license

Voice from the crowd — <“The Sun did what?”>

“You remember titration from school chem lab?”

.——<“Yeah, you put acid in a beaker and you drip in a base until the solution starts to turn red.”>

“What color is Mars?”


“Well, there you are.”

.——<“Horse-hockey!  What’s that got to do with the Sun or what you said about poison?”>

“Look at what our rovers and orbiters found on Mars — atmosphere only 1% of Earth’s but even that’s mostly CO2, no liquid water at the surface, rust-dust everywhere, soil’s loaded with perchlorate salts.  My Crazy Theory can explain all of that.”

.——<“Awright, let’s hear it!”>

“Titration’s all about counting out chemical species.  Your acid-base indicator pinked when you’d neutralized your sample’s H+ ions by adding exactly the right number of OH ions to turn them all into H2O, right?  So think about Mars back in the day when it had liquid water on the ground and water vapor in the atmosphere.  Along comes solar radiation, especially the hard ultra-violet that blows apart stratospheric H2O molecules.  ZOT!  Suddenly you’ve got two free hydrogen atoms and an oxygen floating around.  Then what happens?”

It’s a tough crowd.  <“We’re dying to hear!  Get on with it!”>

“The hydrogens tie up as an H2 molecule.  The escape velocity on Mars is well below the speed of H2 molecules at any temperature above 40K, so those guys abandon Mars for the freedom of Space.  Which leaves the oxygen atom behind, hungry for electrons and ready to oxidize anything it can get close to.”

They’re starting to come along.  <“Wouldn’t the oxygen form O2 and fly away too?”>

“Nowhere near as quickly.  An O2 molecule is 16 times heavier than an H2 molecule.  At a given temperature it moves 1/4 as fast and mostly stays on-planet where it can chew up the landscape.”

.——<“How could an atom do that?”>

“It’s a chain process.  First step for the O is to react with something else in the atmosphere — make an oxidizing molecule like ozone or hydrogen peroxide.  That diffuses down to ground level where it can eat rocks.”

.——<“Wait, ‘eat rocks’!!?!  How does that happen?”>

“Look, most rocks are basically lattices of double-negative oxide ions with positive metal ions tucked in between to balance the charge.  Surface oxide ions can’t be oxidized by an ozone molecule, but they can transmit electron demand down to the metal ions immediately underneath.  An iron2+ ion gets oxidized to iron3+, one big step towards rust-dust.  The charge change disrupts the existing oxide lattice pattern and that piece of the rock erodes a little.”

.——<“What about the poison?”>

“Back when Mars had oceans, they had to have lots of chloride ions floating around to be left behind when the ocean dried up.  Ozone converts chloride to perchlorate, ClO4, which is also a pretty good oxidizer.  Worse, it’s the right size and charge to sneak into your thyroid gland and mess it up.  Poison for sure.  Chemically, solar radiation raised the oxidation state of the whole planet.”

One lonely voice — “Nice try, Jim” — but then the chant returns…

.——<“Amanda!  Amanda!  Amanda!”>

~~ Rich Olcott