Intermezzo for Rubber Ruler

¡Dios mio!  Vera Rubin confirms that galaxies cluster and no-one thinks that’s important?”

“That was in the 1950s, Maria.  Her report was just a degree thesis and a minor paper.  Her advisor, who should have pushed her case but didn’t, was a cosmologist instead of an observational astronomer.  At the time, many considered cosmology to be just barely not metaphysics.  What she reported didn’t bear on what the astronomers of the day considered the Big Questions, like how do stars work and is the expansion of the Universe accelerating.”

“That’s political, ¿no?

“That’s part of how science works — if observations  look important, other people work to invalidate them.  If results look important, other people work to rebut them.  The claims that are validated and can’t be rebutted survive.  But the verifiers and rebutters only work on what their colleagues consider to be important.  Deciding what’s important is a political process.  The history of science is littered with claims that everyone dismissed as unimportant until decades later when they suddenly gained the spotlight.  Galaxy clustering is one of those cases.  All things considered, I think clustering’s initial obscurity had more to do with the current state of the science than with her being a woman.”

“So how did Vera Rubin react to the nada?”

“She went back to her observing, which is what she was happiest doing anyway.  Especially when computers came along and her long-time colleague Kent Ford built a spiffy electronic spectrograph.  No more gear-calculating all day for a single number, no more peering down that measuring engine microscope tube.  Results came more quickly and she could look at larger assemblies out there in the Universe.  Which led to her next breakthrough.”

Rubin inspecting metagalaxy
“Dark matter, yes?”

“No, that came later.  This one was about streams.”

“Of water?”

“Of galaxies.  At the time, most astronomers thought that galaxy motion was a solved problem.  You know about Hubble Flow?”

“No.  Is that the streaming?”

“It’s the background for streaming.  Hubble Flow is the overall expansion of the Universe, all the galaxies moving away from each other.  But it’s not uniform motion.  We know, for instance, that the Andromeda and Milky Way galaxies are going to collide in about five billion years.  Think of galaxies like gas molecules in an expanding balloon.  On the average every molecule gets further away from its neighbors, but if you watched an individual molecule you’d see it bouncing back and forth.  Astronomers call that extra movement ‘peculiar motion.'”

“‘Peculiar’ like ‘odd?'”

“It’s an old-fashioned use of the word — ‘peculiar’ like ‘distinctive’ or ‘unique.’  Anyway, the community’s general notion was you could account for galaxy movement as a simple random motion laid on top of the Hubble Flow.”

“Again Occam’s Razor cuts too close?”

“For sure.  Rubin and Ford looked at data for almost a hundred distant galaxies all over the sky.  Not just any galaxies.  They carefully picked a set of one kind of galaxy, known in the trade as ScI, all of which have about the same ratio of absolute brightness to diameter.  Measure the diameter, you get the absolute brightness.  A distant light appears dimmer as the square of its distance.  Measure the brightness we see on Earth, make a few corrections, and the inverse square law lets you calculate how far the galaxy is from here.  Then Hubble’s distance-speed law tells you how fast you expect the galaxy to be receding.  That’s half of it.”

“OK…?”

“The other half is how fast the galaxies are really moving.  For that Rubin and Ford turned to spectroscopy.  From the red/blue-shift of each galaxy they had an independent measure of its speed relative to us.  Guess what?  They didn’t match the Hubble Flow speeds.”

Galactic velocity anisotropy
Adapted from
Astronomical Journal 81, 719-37 (1976).

“Faster or slower?”

“Both!  In one half the sky these distant galaxies appear to be fleeing faster than the Hubble Flow, and in the other half they’re going slower.  The simplest explanation is that our entire Local Group is streaming towards the ‘slowest’ part of the sky.  Rubin and company had discovered a large-scale, third kind of galactic motion — rivers of galaxies streaming through the Universe.”

“Did the people get excited?”

“Not for a while, of course.”

~~ Rich Olcott

Concerto for Rubber Ruler

An unfamiliar knock at my office door — more of a tap than a knock. “C’mon in, the door’s open.”

¿Está ocupado?

“Hi, Maria. No, I’m not busy, just taking care of odds and ends. What can I do for you?”

“I’m doing a paper on Vera Rubin for la profesora. I have the biographical things, like she was usually the only woman in her Astronomy classes and she had to make her own baño at Palomar Observatory because they didn’t have one for señoras, and she never got the Nobel Prize she deserved for discovering dark matter.

“Wait, you have all negatives there.  Her life had positives, too.  What about her many scientific breakthroughs?”

“That’s why I’m here, for the science parts I don’t understand.”

“I’ll do what I can. What’s the first one?”

“In her thesis she showed that galaxies are ‘clumped.’  What is that?”

“It means that the galaxies aren’t spread out evenly.  Astronomers at the time believed, I guess on the basis of Occam’s Razor, that galaxies were all the same distance from their neighbors.”

“Occam’s Razor?  Ah, la navaja de Okcam.  Yes, we study that in school — do not assume more than you have to.  But why would evenly be a better assumption than clumpy?”

“At the time she wrote her thesis the dominant idea was that the Big Bang’s initial push would be ‘random’ — every spot in the Universe would have an equal chance of hosting a galaxy.  But she found clusters and voids.  That made astronomers uncomfortable because they couldn’t come up with a mechanism that would make things look that way.  It took twenty years before her observations were accepted.  I’ve long thought part of her problem was that her thesis advisor was George Gamow.  He was a high-powered physicist but not an observational astronomer.  For some people that was sufficient excuse to ignore Rubin’s work.”

“Another excuse.”

“Yes, that, too.”

“But why did she have to discover the clumpy?  You can just look up in the sky and see things that are close to each other.”

“Things that appear to be close together in the sky aren’t necessarily close together in the Universe.  Look out my window.  See the goose flying there?”

“Mmm…  Yes!  I see it.”

“There’s an airplane coming towards it, looks about the same size.  Think they’ll collide?”

“Of course no.  The airplane looks small because it’s far away.”

“But when their paths cross, we see them at the same point in our sky, right?”

“The same height up, yes, and the same compass direction, but they have different distances from us.”

“Mm-hm.  Geometry is why it’s hard to tell whether or not galaxies are clustered.  Two galaxy images might be separated by arc-seconds or less.  The objects themselves could be nearest neighbors or separated by half-a-billion lightyears.  Determining distance is one of the toughest problems in observational astronomy.”

“That’s what Vera Rubin did?  How?”

“In theory, the same way we do today.  In practice, by a lot of painstaking manual work.  She did her work back in the early 1950s, when ‘computer’ was a job title, not a device.  No automation — electronic data recording was a leading-edge research topic.  She had to work with images of spectra spread out on glass plates, several for each galaxy she studied.  Her primary tool, at least in the early days, was a glorified microscope called a measuring engine.  Here’s a picture of her using one.” Vera Rubin

“She looks through the eyepiece and then what?”

“She rotates those vernier wheels to move each glass-plate feature on the microscope stage to the eyepiece’s crosshairs.  The verniers give the feature’s x– and y-coordinates to a fraction of a millimeter.  She uses a gear-driven calculating machine to turn galaxy coordinates into sky angles and spectrum coordinates into wavelengths.  The wavelengths, Hubble’s law and more arithmetic give her the galaxy’s distance from us.  More calculations convert her angle-angle-distance coordinates to galactic xy-z-coordinates.  Finally she calculates distances between that galaxy and all the others she’s already done.  After processing a few hundred galaxies, she sees groups of short-distance galaxies in reportable clusters.”

“Wouldn’t a 3-D graphic show them?”

“Not for another 50 years.”

~~ Rich Olcott