The Moon And Chalk

Cathleen’s talking faster near the end of the class. “OK, we’ve seen how Venus, Earth and Mars all formed in the same region of the protosolar disk and have similar overall compositions. We’ve accounted for differences in their trace gasses. So how come Earth’s nitrogen-oxygen atmosphere is so different from the CO2-nitrogen environments on Venus and Mars? Let’s brainstorm — shout out non-atmospheric ways that Earth is unique. I’ll record your list on Al’s whiteboard.”


“Plate tectonics!”



“The Moon!”

“Wombats!” (That suggestion gets a glare from Cathleen. She doesn’t write it down.)

“Goldilocks zone!”

“Magnetic field!”


She registers the last one but puts parentheses around it. “This one’s literally a quickie — real-world proof that human activity affects the atmosphere. Since the 1900s gaseous halogen-carbon compounds have seen wide use as refrigerants and solvents. Lab-work shows that these halocarbons catalyze conversion of ozone to molecular oxygen. In the 1970s satellite data showed a steady decrease in the upper-atmosphere ozone that blocks dangerous solar UV light from reaching us on Earth’s surface. A 1987 international pact banned most halocarbon production. Since then we’ve seen upper-level ozone concentrations gradually recovering. That shows that things we do in quantity have an impact.”

“How about carbon dioxide and methane?”

“That’s a whole ‘nother topic we’ll get to some other day. Right now I want to stay on the Mars-Venus-Earth track. Every item on our list has been cited as a possible contributor to Earth’s atmospheric specialness. Which ones link together and how?”

Adopted from image by Immanuel Giel, CC BY-SA 3.0

Astronomer-in-training Jim volunteers. “The Moon has to come first. Moon-rock isotope data strongly implies it condensed from debris thrown out by a huge interplanetary collision that ripped away a lot of what was then Earth’s crust. Among other things that explains why the Moon’s density is in the range for silicates — only 60% of Earth’s density — and maybe even why Earth is more dense than Venus. Such a violent event would have boiled off whatever atmosphere we had at the time, so no surprise the atmosphere we have now doesn’t match our neighbors.”

Astrophysicist-in-training Newt Barnes takes it from there. “That could also account for why only Earth has plate tectonics. I ran the numbers once to see how the Moon’s volume matches up with the 70% of Earth’s surface that’s ocean. Assuming meteor impacts grew the Moon by 10% after it formed, I divided 90% of the Moon’s present volume by 70% of Earth’s surface area and got a depth of 28 miles. That’s nicely within the accepted 20-30 mile range for depth of Earth’s continental crust. It sure looks like our continental plates are what’s left of the Earth’s original crust, floating about on top of the metallic magma that Earth held onto.”

Jeremy gets excited. “And the oceans filled up what the continents couldn’t spread over.”

“That’s the general idea.”

Al’s not letting go. “But why does Earth have so much water and why is it the only one of the three with a substantial magnetic field?”

Cathleen breaks in. “The geologists are still arguing about whether Earth’s surface water was delivered by billions of incoming meteorites or was expelled from deep subterranean sources. Everyone agrees, though, that our water is liquid because we’re in the Goldilocks zone. The water didn’t steam away as it probably did on Venus, or freeze below the surface as it may have on Mars. Why the magnetic field? That’s another ‘we’re still arguing‘ issue, but we do know that magnetic fields protect Earth and only Earth from incoming solar wind.”

“So we’re down to photosynthesis and … limestone?”

“Photosynthesis was critical. Somewhere around two billion years ago, Earth’s sea-borne life-forms developed a metabolic pathway that converted CO2 to oxygen. They’ve been running that engine ever since. If Earth ever did have CO2 like Venus has, green things ate most of it. Some of the oxygen went to oxidizing iron but a lot was left over for animals to breathe.”

“But what happened to the carbon? Wouldn’t life’s molecules just become CO2 again?”

“Life captures carbon and buries it. Chalky limestone, for instance — it’s calcium carbonate formed from plankton shells.”

Jim grins. “We owe it all to the Moon.”

~~ Rich Olcott

Life and energy on Titan, maybe

Say you’re an astrobiologist tasked with designing a world that would be able to support life we’d be able to recognize as such.  What absolute essentials would you need to include?

Abundant liquid water?  Biologists have found algae thriving inside desert rocks, moistened only by dew seeping in through microscopic pores.  A comfortable temperature?  We’ve found bacteria living in environments as cold as 5ºF and as warm as 250ºF.  A solid surface to grow on?  Arthur C Clarke (A Meeting with Medusa) wrote about complex life-forms floating in the 3,000-mile-deep atmosphere of Jupiter.  OK, that’s science fiction, but Clarke’s the guy who invented geostationary satellites for telecommunications and GPS.gibbs-energies

Many scientists would say that the obvious essential is a source of chemical energy.  I’d add, “and an efficient mechanism to convert the source energy to a form that can be transported within an organism.”  To my knowledge, all life-forms now on Earth have met the second prerequisite by using the ATP molecule for intra-cellular energy transport.  But life has been amazingly creative in finding ways to build those ATPs.  The tall diagram lists some biologic energy sources in decreasing order of how much energy is released.

All the Biology textbooks tell us that Earth’s energy cycle starts with the Sun.  Solar photons energize plant photosynthesis which creates loads of ATP molecules.  Some of them power a multistep process which combines CO2 and H2O to release O2 and create carbohydrates (CH2O)x.  (Glucose, for instance, is (CH2O)6.  Guess where the term “carbohydrate” came from.)  Earth’s biologic carbon cycle completes when other life “burns” carbohydrates to exploit the energy stored therein.  On this chart, “burn” means “combine with O2” and usually doesn’t involve fire.

Notice that “Make (CH2O)x” is at the bottom of the chart — that process absorbs a lot of energy per carbon atom.  Conversely, “Burn (CH2O)x” releases energy which is why we like sugar too much.

In the past couple of decades we’ve learned that’s not the only way, or maybe even the dominant way, that Earth-life makes its ATPs.  Microbes have evolved a surprising number of “front ends” to the energy machinery.  Here in Colorado we’ve got problems in old mines where microbes build ATPs by oxidizing iron pyrite (FeS) to sludgy rust (Fe2O3) and sulfuric acid (H2SO4).  Works great for them, not so good for downstream organisms.

Iron compounds are such a good energy source that many scientists believe (it’s still controversial) that Earth’s hematite and magnetite deposits were laid down half-a-billion years ago by archaea, microorganisms that preceded bacteria.

Way down on the energy-source scale are the methanogens, archaea that use molecular hydrogen to convert CO2 to methane (CH4).  They only live in zero-oxygen environments — peat bogs, ocean-bottom hydrothermal vents and subsurface veins that are perilous to mine.

Earthly biology participates in many cyclic processes.  The bi-level diagram below highlights two — oxygen cycling between O2 and oxygen compounds, and carbon cycling between CO2 and living tissues (which contain carbohydrates).

If it weren’t for light-driven photosynthesis ( ~~ is a photon), pretty soon all our O2 would be locked up in the ground where it came from.  In a sense, Earth uses life and carbon to get oxygen back up into the atmosphere.  Astronomers look for O2 in a planetary atmosphere as a sign of life.titan-cycles-2

Maybe Titan does something similar.  Titan’s atmosphere contains methane (CH4) and H2 but the quantities aren’t right.  The purple “Lyman α” and blue “Balmer α” lines on the energy chart denote particularly strong solar photons that can break up C-H bonds and generate H2 in Titan’s upper atmosphere.  We understand the relevant processes pretty well and can calculate how much methane, acetylene (C2H2) and H2 should be up there.

The calculated quantities pretty much match what astronomers found in Titan’s upper atmosphere.  But they’re not what Cassini-Huygens found on the ground.  Acetylene just isn’t there, and a (somewhat precarious) computer simulation indicates that there’s much less ground-side H2 than you’d expect from simple diffusion.  Dr Chris McKay has put those clues and the energy stack together to suggest that something on Titan inhales acetylene and hydrogen and exhales methane.

Something alive, maybe?

~~ Rich Olcott