# Better A Saber Than A Club?

There’s a glass-handled paper-knife on my desk, a reminder of a physics experiment gone very bad back in the day. “Y’know, Vinnie, this knife gives me an idea for another Star Trek weapons technology.”

“What’s that, Sy?”

“Some kinds of wave have another property in addition to frequency, amplitude and phase. What do you know about seismology?”

“Not a whole lot. Uhh … earthquakes … Richter scale … oh, and the Insight lander on Mars has seen a couple dozen marsquakes in the first six months it was looking for them.”

“Cool. Well, where I was going is that earthquakes have three kinds of waves. One’s like a sound wave — it’s called a Pwave or pressure wave and it’s a push-pull motion along the direction the wave is traveling. The second is called an Swave or shear wave. It generates motion in some direction perpendicular to the wave’s path.”

“Not only up-and-down?”

“No, could be any perpendicular direction. Deep in the Earth, rock can slide any which-way. One big difference between the two kinds is that a Pwave travels through both solid and molten rock, but an Swave can’t. Try to apply shearing stress to a fluid and you just stir it around your paddle. The side-to-side shaking isn’t transmitted any further along the wave’s original path. The geophysicists use that difference among other things to map out what’s deep below ground.”

“Parallel and perpendicular should cover all the possibilities. What’s the third kind?”

“It’s about what happens when either kind of deep wave hits the surface. A Pwave will use up most of its energy bouncing things up and down. So will an Swave that’s mostly oriented up-and-down. However, an Swave that’s oriented more-or-less parallel to the surface will shake things side-to-side. That kind’s called a surface wave. It does the most damage and also spreads out more broadly than a P- or Swave that meets the surface with the same energy.”

“This is all very interesting but what does it have to do with Starfleet’s weapons technology? You can’t tell a Romulan captain what direction to come at you from.”

“Of course not, but you can control the polarization angle in your weapon beams.”

“Polarization angle?”

“Yeah. I guess we sort of slid past that point. Any given Swave vibrates in only one direction, but always perpendicular to the wave path. Does that sound familiar?”

“Huh! Yeah, it sounds like polarized light. You still got that light wave movie on Old Reliable?”

“Sure, right here. The red arrow represents the electric part of a light wave. Seismic waves don’t have a magnetic component so the blue arrow’s not a thing for them. The beam is traveling along the y‑axis, and the electric field tries to move electrons up and down in the yz plane. A physicist would say the light beam is planepolarized. Swaves are polarized the same way. See the Enterprise connection?”

“Not yet.”

“Think about the Star Trek force-projection weapons — regular torpedoes, photon torpedoes, ship-mounted phasers, tractor beams, Romulan pulse cannons and the like. They all act like a Pwave, delivering push-pull force along the line of fire. Even if Starfleet’s people develop a shield-shaker that varies a tractor beam’s phase, that’s still just a high-tech version of a club or cannon ball. Beamed Swaves with polarization should be interesting to a Starfleet weapons designer.”

“You may have something. The Bridge crew talks about breaking through someone’s shield. Like you’re using a mace or bludgeon. A polarized wave would be more like an edged knife or saber. Why not rip the shield instead? Those shields are never perfect spheres around a ship. If your beam’s polarization angle happens to match a seam where two shield segments come together — BLOOEY!”

“That’s the idea. And you could jiggle that polarization angle like a jimmy — another way to confuse the opposition’s defense system.”

“I’m picturing a Klingon ship’s butt showing through a rip in its invisibility cloak. Haw!”

~~ Rich Olcott