Teena And The Quantum Birds

“Hey, Uncle Sy, what’s quantum?”

“That’s a big question for a small person, Teena.  Where’d you hear that word?”

“You and Mommy were talking and you said that something had to do with quantum mechanics.  I know car mechanics work on cars so I want to know what the quantum mechanics work on.”

“That’s a fun question, Sweetie, because there actually is a kind of car called a Quantum.  Not very many of them and they’re made in England so you don’t often see one here.  But the quantum mechanics we were talking about is completely different.  I’ll take it one word at a time, OK?”

<sigh> “OK, but let’s sit on the porch swing, I can tell this will take a while.”

“Oh, it’s not going to be that bad.  You know what mechanisms are, right?”

“Um.. they’re not like people or animals and they’re not like my tablet thingie…. They’ve got gears and things.”

“Good enough.  A big part of physics is thinking about how mechanisms work and that’s called ‘mechanics.’  There’s lots of different kinds of mechanisms.  Each kind has a different kind of mechanics, like ‘celestial mechanics’ which is thinking about how stars and planets move, and ‘fluid mechanics’ which is thinking about how liquids and gases move.  With me so far?”

“So quantum mechanics is thinking about how quantums move.  But what’s a quantum?”

“Quantum isn’t a thing, it’s a set of rules that add up to be a theory.  The first rule is, it only applies to things that are very, very small.  That’s what the word ‘quantum’ has come to mean — the smallest possible amount of something.  So quantum rules apply to quantum-sized things.”

“As small as my water bears?”

“Much smaller.  Things that are as small compared to a water bear as a water bear egg is small compared to you.  Things like molecules and atoms, and those are made of lots of parts that are even way smaller.”

“Ooo, that’s teeny.  How do you even see them?”

“Well, you don’t.  They’re far too small to see even with a microscope.  It’s worse — if you did try to see an atom’s parts, any light you could shine on them would move them around so they’re not where they were when you started to look.”

“Then how do the quantum mechanics people learn about them?”

“Umm…  Ah! See that flock of birds flying past?”

“Mommy says they’re starlings but I think they’re blackbirds.”

“Could be either or both, it’s hard to tell when they’re in the air like that.  Sometimes the two kinds flock together.  If it’s a flock of starlings, the flock is called a murmuration, which is one of my favorite words.”

“Oh, that’ll be one of my favorites now, too.  Murmuration, mmmurmuration, mmmm.  I love  ‘M‘ words.”

“Anyway, can you see what direction any one bird is flying?”

“No, there’s too many and they go back and forth and it’s too confusing and I like the shapes the whole murmuration makes.”

“But can you point to the middle of it and see how the pattern moves?”

“It’s right the— ooo, look, it did a spiral!”

“Murmurations are sorta like the kind of thing the quantum mechanics people work with.  They look at lots and lots of quantum-size things to see how the typical ones and the special ones behave.  Then they try to work out what the behavior rules are.  Sometimes the rules are really simple, like the rules the birds use.”

“Birds use rules?  I thought they could fly wherever they wanted to.”

“Sometimes they do, but if they’re flying in a murmuration they definitely follow rules.  Most of them.  Most of the time.  If I were one of those birds, I’d stay about the same distance from each of my neighbor birds, I’d usually fly in about the same direction as my neighbors are flying, and I’d also aim at about the middle of the flo— murmuration.  Scientists have found that just those three rules account for most of how a murmuration behaves.  Cool, huh?”

“Simple rules for bird brains, that’s funny!”

“But look at the beautiful shapes those simple rules make.”Murmuration 1

~~ Rich Olcott

Advertisements

Baseball And The Virtual Particle

Al was pouring my mugful of his morning blend (“If it doesn’t wake you up we’ll call the doctor“) when Jeremy stepped into the counter.  “Hi, Mr Moire.  I’m still trying to get my head around that virtual particle thing.  Hi, Al, a large decaf, please, double sugar, three creamers.  It looks like the shorter amount of time you give a particle to happen, the bigger it can get, but that doesn’t make sense because I’d think the longer you wait the more likely it’s gonna happen.  Thanks, Al.”

“Take a breath to blow on that coffee, Jeremy, or you’ll burn your tongue.  Hmm…  Word is your batting average is running about 250 these days.  That right?”

“Yessir.  I didn’t know you’re keeping track.”

“Keeping my ears open is part of my job.  So you’re hitting about once every four at-bats.  That gives Coach an estimate of when you’ll get your next hit.  What’s your slugging average?”

“What’s a slugging average?”

“Your total number of batted-on bases, divided by your at-bats, times a thousand ’cause sports writers don’t do decimal points.  You get one count in the numerator for a single, two for a double and so on.”

“Lemme think.  If I’m doing 250 overall and about half are singles and the other half are doubles that’d give me an SA of … about 375.”

“Pretty good.  So does that number tell Coach anything about when to expect another double?”

“Mmm, no, but what does that have to do with my virtual particle question?”

“In each case you’ve got a pair of statistics that tell you some things and hide other things.  Batting averages and your wait-time notion are about when to expect an event of some sort to occur.  You could hit another single or you could tag a homer — all Coach knows is that you should be able to get on base about once every four at-bats.”

“What about the other statistics?”

“They’re the flip side, sort of.  You could think of the SA as batting potential.  If you hit homers all the time your SA would be 4000.  If you whiff every pitch your SA would be zero.  Anything between those extremes tells Coach something about your productivity but nothing about when you’re going to produce.  Energy uncertainty works the same way for virtual particles.  If you’re doing long-duration energy evaluations you can be pretty sure that any single measurement will be close to the long-term average.  You might possibly see a significant deviation from that average but only if you check just the right brief interval.”Virtual baseball

“And for the particles in that empty space?”

“If you’re looking long-term, no particles.  That’s what ’empty’ means.  When there’s definitely nothing in a volume of space it makes sense to say its energy is zero because particles have mass and therefore embody energy.  But a particle might show up and go away after a very brief interval without significantly affecting that long-term average.  Quantum theory doesn’t say it will show up, just that it might.”

“So does it?”

“Oh yes, in space, in the lab and in commerce.  One explanation for your cell phone’s NFC function hinges on virtual radio-frequency photons being exchanged between devices.”

“Wait.  If a virtual particle shows up in that empty space, then it’s not empty any more and its energy isn’t zero any more, is it?”

“You’ve just discovered one aspect of zero-point energy, the quantum prediction that every system, even empty space, contains a non-zero minimum amount of energy.  People have thought about tapping that energy to power perpetual motion machines.”

“That’d be cool — the ultimate renewable.”

“Wouldn’t it, though?  But no can do, for a couple of reasons.  Virtual particles, by their nature, are random phenomena.  You can’t depend upon what kind of particle might show up, or when, nor how long it might hang around.  It’s not like NFC where antennas generate the particles.  The other issue is that ‘minimum’ means minimum.  If you could pull energy out of that space you’d lower its energy content and drop it below the minimum…. What’s the grin about?”

“Just wondering how they’d score hitting a virtual ball that disappears before the fielder catches it.”

~~ Rich Olcott