Here’s a Different Angle

“OK, Sy, so there’s a bulge on the Moon’s side of the Earth and the Earth rotates but the bulge doesn’t and that makes the Moon’s orbit just a little bigger and you’ve figured out that the energy it took to lift the Moon raised Earth’s temperature by a gazillionth of a degree, I got all that, but you still haven’t told Al and me how the lifting works.”

“You wouldn’t accept it if I just said, ‘The Moon lifts itself by its bootstraps,’ would you?”

“Not for a minute.”

“And you don’t like equations. <sigh> OK, Al, pass over some of those paper napkins.”

“Aw geez, Sy.”

“You guys asked the question and this’ll take diagrams, Al. Ante up. … Thanks. OK, remember the time Cathleen and I caught Vinnie here at Al’s shop playing with a top?”

“Yeah, and he was spraying paper wads all over the place.”

“I wasn’t either, Al, it was the top sending them out with centri–…, some force I can never remember whether it’s centrifugal or centripetal.”

“Centrifugal, Vinnie, –fugal– like fugitive, outward‑escaping force. It’s one of those ‘depends on how you look at itfictitious forces. From where you were sitting, the wads looked like they were flying outward perpendicular to the top’s circle. From a wad’s point of view, it flew in a straight line tangent to the circle. It’s like we have two languages, Room and Rotor. They describe the same phenomena but from different perspectives.”

“Hey, it’s frames again, ain’t it?”

“Newton’s inertial frames? Sort‑of but not quite. Newton’s First Law only holds in the Room frame — no acceleration, motion is measured by distance, objects at rest stay put. Any other object moves in a straight line unless its momentum is changed by a force. You can tackle a problem by considering momentum and force components along separate X and Y axes. Both X and Y components work the same way — push twice as hard in either direction, get twice the acceleration in that direction. Nice rules that the Rotor frame doesn’t play by.”

“I guess not. The middle’s the only place an object can stay put, right?”

“Exactly, Al. Everything else looks like it’s affected by weird, constantly‑varying forces that’re hard to describe in X‑Y terms.”

“So that breaks Newton’s physics?”

“Of course not. We just have to adapt his F=m·a equation (sorry, Vinnie!) to Rotor conditions. For small movements we wind up with two equations. In the strict radial direction it’s still F=m·a where m is mass like we know it, a is acceleration outward or inward, and F is centrifugal or centripetal, depending. Easy. Perpendicular to ‘radial‘ we’ve got ‘angular.’ Things look different there because in that direction motion’s measured by angle but Newton’s Laws are all about distances — speed is distance per time, acceleration is speed change per time and so forth.”

“So what do you do?”

“Use arc length. Distance along an arc is proportional to the angle, and it’s also proportional to the radius of the arc, so just multiply them together.”

“What, like a 45° bend around a 2-foot radius takes 90 feet? That’s just wrong!”

“No question, Al. You have to measure the angle in the right units. Remember the formula for a circle’s circumference?”

“Sure, it’s 2πr.”

“Which tells you that a full turn’s length is times the radius. We can bridge from angle to arc length using rotational units so that a full turn, 360°, is units. We’ll call that unit a radian. Half a circle is π radians. Your 45° angle in radians is π/4 or about ¾ of a radian. You’d need about (¾)×(2) or 1½ feet of whatever to get 45° along that 2-foot arc. Make sense?”

“Gimme a sec … OK, I’m with you.”

“Great. So if angular distance is radius times angle, then angular momentum which is mass times distance per time becomes mass times radius times angle per time.”

“”Hold on, Sy … so if I double the mass I double the momentum just like always, but if something’s spinning I could also double the angular momentum by doubling the radius or spinning it twice as fast?”

“Couldn’t have put it better myself, Vinnie.”

~~ Rich Olcott

The Pretty-good Twenty-nine

Time for coffee and a scone. As I step into Al’s coffee shop he’s taking his Jupiter poster down from behind the cash register.

“Hey, Al, I liked that poster. You decide you prefer plain wall?”

“Nah, Sy, I got a new one here. Help me get it up over the hook.”

A voice from behind us. “Ya got it two degrees outta plumb, clockwise.” Vinnie, of course. Al taps the frame to true it up.

Teachers, click here to download a large-format printable copy.

“Hey, Sy, in the middle, that’s the same seven units we just finished talking about — amps for electric current, kelvins for temperature, meters for length, kilograms for mass, seconds for time, moles for counting atoms and such, and that candela one you don’t like. What’s all the other bubbles about? For that matter, what’s the poster about, Al?”

“What it’s about, Vinnie, is on May 20 the whole world goes to a new set of measurement standards, thanks to some international bureau.”

Le Bureau International des Poids et Mesures.” It’s Newt Barnes in from the Physics building. “The bubbles in that central ring are the BIPM’s selections for fundamental standards. Each one’s fixed by precisely defined values of one or more universal physical constants. For instance, a ruler calibrated on Earth will match up perfectly with one calibrated on Mars because both calibrations depend on the wavelength of radiation from a cesium-based laser and that’s the same everywhere.”

“How about the other bubbles and the rings around them?”

“They’re all derived quantities, simple combinations of the fundamental standards.”

“Hey, I see one I recognize. That °C has gotta be degrees centigrade ’cause it’s right next to kelvins. Centigrade’s the same as kelvins plus , uh, 273?”

“There you go, Al. What’s ‘rad’ and ‘sr’, Newt?”

“Symbols for radian and steradian, Vinnie. They both measure angles like degrees do, but they fit the BIPM model because they’re ratios of lengths and length is one of the fundamentals. Divide a circle’s circumference by its radius and what do you get?”

“Twice pi.”

“Right, call it 2π radians and that’s a full circle. Half a circle is π radians, a right angle is π/2 radians and so on. Works for any size circle, right? Anyone remember the formula for the area of a sphere?”

“4πr2, right?”

“Exactly. If you divide any sphere’s area by the square of its radius you get 4π steradians. Any hemisphere is 2π steradians and so on. Steradians are handy for figuring things like light and gravity that decrease as the square of the distance.”

Something occurs to me. “I’m looking at those bigger bubbles that enclose the derived quantities. Seems to me that each one covers a major area of physical science. The green one with newtons for force, pascals for pressure, joules for energy and watts for power — that’d be Newtonian physics. The red circle with volts plus coulombs for charge, ohms for resistance, farads for capacitance, siemens for electrical conductance — all that’s electronics. Add in henries for inductance, webers for magnetic flux and teslas for flux density and you’ve got Maxwellian electromagnetism.”

“You’re on to something, Sy. Chemistry’s there with moles and katals, also known as moles per second, for catalytic activity. How does your idea fit the cluster attached to seconds?”

“They’re all per-second rates, Newt. The hertz is waves per second for periodic things like sound or light-as-a-wave. The other three are about radioactivity — bequerels is fissions per second; grays and sieverts are measures of radiation exposure per kilogram.”

“Vinnie says you don’t like candelas, so you probably don’t like lumens or luxes either. What’s your gripe with them?”

“All three are supposed to quantify visible light from a source, as opposed to the total emission at all wavelengths. But the definition of ‘visible’ zeros in on one wavelength in the green because that’s where most people are most sensitive. Candelas aren’t valid for a person who’s color-blind in the green, nor for something like a red laser that has no green lightwaves. I call bogosity, and lumens and luxes are both candela-based.”

“These 29 standards are as good on Mars as they are here on Earth?”

“That’s the plan.”

~~ Rich Olcott