The Sound of Money

<chirp, chirp> “Moire, here, there’ll be a late-night surcharge for this call.”

“Hiya, Sy, it’s me, Vinnie. Got a minute? I wanna run something past you.”

“Sure, if it’s interesting enough to keep me awake.”

“It’s that Physics-money hobby horse you’ve been riding. I think I’ve got another angle on it for you.”

“Really? Shoot.”

“OK, a while ago you and me and Richard Feder talked about waves and how light waves and sound waves are different because light waves make things go up-and-down while the waves go forward but sound waves go back-and-forth.”

“Transverse waves versus compression waves, uh-huh.”

“Yeah and when you look close at a sound wave what you see is individual molecules don’t travel. What happens is like in a pool game where one ball bumps another ball and it stops but the bumped ball moves forward and the first ball maybe even moves back a little.”

“The compression momentum carries forward even though the particles don’t, right.”

“And that means that sound waves only travel as fast as the air molecules can move back and forth which is a lot slower than light waves which move by shaking the electric field. I got that, but why doesn’t sound move a lot faster in something like iron where the atoms don’t have to move?”

“Oh, it does, something like 200 times faster than in air. There’s a couple of factors in play. It all goes back to Newton —”

“Geez, he had a hand in everything Physics, didn’t he?”

“Except for electromagnetism and nuclear stuff. The available technology was just too primitive to let him experiment in those areas. Anyway, Newton discovered a formula connecting the speed of sound in a medium to its density. Like his Law of Gravity, it worked but he didn’t know why it worked. Also like gravity, we’ve got a better idea now.”

“What’s the better idea?”

“The key notions weren’t even invented until decades after Newton’s Principia was published. The magic words are the particulate nature of matter and intermolecular stiffness.”


“One at a time. Newton was a particle guy to an extent. He believed that light is made of particles, but he didn’t take the next step to thinking of all matter as being made of particles. But it is, and the particles interact with each other. Think of it as stickiness. How effective the stickiness is depends on the temperature and which molecules you’re talking about. Gas molecules have so much kinetic energy relative to their sticky that they mostly just bounce off each other. In liquids and solids the molecules stay close enough together that the stickiness acts like springs. The springs may be more or less stiff depending on which molecules or ions or atoms are involved.”

“I see where you’re going. Stuff with stiffer springs doesn’t move as much as looser stuff at the same temperature; sound goes faster through a solid than through a liquid or gas. That’s what Newton figured out, huh?”

“No, he just measured and said, basically, ‘here’s the formula.‘ Just like with gravity, he didn’t suggest why the numbers were what they were. <yawn> So, you called with an idea about sound and money physics.”

“Right. Got off the track there, but this was helpful. What got me started was some newscaster saying how the Paycheck Protection Program is dumping money into the economy during the pandemic. My first thought was, ‘Haw, that’s gotta be a splash!‘ Then I imagined this pulse of money sloshing back and forth like a wave and that led me to sound waves and then I kept going. No dollar bill moves around that much, but when people spend them that’s like the compression wave moving out.”

“Interesting idea, Vinnie. From a Physics perspective, the question is, ‘How fast does the wave move?’ It’s another temperature‑versus‑stickiness thing.”

“Yeah, I figure money velocity measures the economy like temperature measures molecule motion. Money velocity goes up with inflation. If the velocity’s high people spend their money because why not.”

“Yup. From the government’s perspective the whole purpose of economic stimulation is getting the cash flowing again. Their problem is locating the money velocity kickover point.”

~~ Rich Olcott

Disentangling 3-D Plaid

Our lake-side jog has slowed to a walk and suddenly Mr Feder swerves off the path to thud onto a park bench. “I’m beat.”

Meanwhile, heavy footsteps from behind on the gravel path and a familiar voice. “Hey, Sy, you guys talking physics?”

“Well, we were, Vinnie. Waves, to be exact, but Feder’s faded and anyway his walk wasn’t fast enough to warm me up.”

“I’ll pace you. What’d I miss?”

“Not a whole lot. So many different kinds of waves but physicists have abstracted them down to a common theme — a pattern that moves through space.”

“Haw — flying plaid.”

“That image would work if each fiber color carried specific values of energy and momentum and the cross-fibers somehow add together and there’s lots of waves coming from all different directions so it’s 3-D.”

“Sounds complicated.”

“As complicated as the sound from a symphony.”

“I prefer dixieland.”

“Same principle. Trumpet, trombone, clarinet, banjo — many layers of harmony but you can choose to tune in on just one line. That’s a clue to how physicists un-complicate waves.”

“How so?”

“Back in the early 19th century, Fourier showed that you can think about any continuous variation stream, no matter how complicated, in terms of a sum of very simple variations called sine waves. You’ve seen pictures of a sine wave — just a series of Ss laid on their sides and linked together head-to-tail.”

“Your basic wiggly line.”

“Mm-hm, except these wiggles are perfectly regular — evenly spaced peaks, all with the same height. The regularity is why sine waves are so popular. Show a physicist something that looks even vaguely periodic and they’ll immediately start thinking sine wave frequencies. Pythagoras did that for sound waves 2500 years ago.”

“Nah, he couldn’t have — he died long before Fourier.”

“Good point. Pythagoras didn’t know about sine waves, but he did figure out how sounds relate to spatial frequencies. Pluck a longer bowstring, get a lower note. Pinch the middle of a vibrating string. The strongest remaining vibration in the string sounds like the note from a string that’s half as long. Pythagoras worked out length relationships for the whole musical scale.”

“You said ‘spacial frequency’ like there’s some other kind.”

“There is, though they’re closely related. Your ear doesn’t sense the space frequency, the distance between peaks. You sense the time between peaks, the time frequency, which is the space frequency, peaks per meter, times how fast the wave travels, meters per second. See how the units work out?”

“Cute. Does that space frequency/time frequency pair-up work for all kinds of waves?”

“Mostly. It doesn’t work for standing waves. Their energy’s trapped between reflectors or some other way and they just march in place. Their time frequency is zero peaks per second whatever their peaks per meter space frequency may be. Interesting effects can happen if the wave velocity changes, say if the wave path crosses from air to water or if there’s drastic temperature changes along the path.”

“Hah! Mirages! Wait, that’s light getting deflected after bouncing off a hot surface into cool air. Does sound do mirages, too?”

“Sure. Our hearing’s not sharp enough to notice sonic deflection by thermal layering in air, but it’s a well-known issue for sonar specialists. Echoes from oceanic cold/warm interfaces play hob with sonar echolocation. I’ll bet dolphins play games with it when the cold layer’s close enough to the surface.”

“Those guys will find fun in anything. <pause> So Pythagoras figured sound frequencies playing with a bow. Who did it for light?”

“Who else? Newton, though he didn’t realize it. In his day people thought that light was colorless, that color was a property of objects. Newton used the rainbow images from prisms to show that color belonged to light. But he was a particle guy. He maintained that every color was a different kind of particle. His ideas held sway for over 150 years until Fresnel convinced the science community that lightwaves are a thing and their frequencies determine their color. Among other things Fresnel came up with the math that explained some phenomena that Newton had just handwaved past.”

“Fresnel was more colorful than Newton?”

“Uh-uh. Compared to Newton, Fresnel was pastel.”

~~ Rich Olcott

Wave As You Go By

A winter day, a bit nippy and windy enough to raise scattered whitecaps on the park lake. Apparently neither the geese nor Mr Richard Feder (of Fort Lee, NJ) enjoy that — the geese are standing on the shore and he’s huddled down on a bench as I pass. “Hey Moire, I gotta question.”

“Mr Feder. I’m trying to keep warm. If you want answers you’ll have to jog along.”

“Oh, alright <oof>. OK, watching those waves got me thinking. They keep going because the wind pushes on ’em, right? So what pushes on sound waves and light waves? If something pushes hard enough on a sound wave does it speed up enough to be a light wave?”

“So many questions. Are you sure you’ve got enough wind?”

“Ha, ha. I’ve been working out a little.”

“We’ll see. Well, first, nothing needs to push on a wave once it’s started. They travel on their own momentum.”

“Then why do these waves die away when the wind stops?”

“You’ve got two things going on there, on different time scales. When the wind stops blowing it stops making new waves. Actually, winds rarely stop all at once, they taper off. It looks like waves are dying away but really you just see smaller and smaller waves. Inside a single wave, though, friction takes its toll.”

“Friction? Waves rub against each other? That’s not what’s going on here — they keep their distance unless different groups run crosswise and then they all just keep going.”

Turbulence in a water wave

“Not friction between waves, friction within a wave. There’s a lot of turbulence inside a water wave — the wind piles up surface molecules on one side, gravity and surface tension move the other side’s molecules downward, and the ones inside are pulled in every direction. All that helter-skelter motion randomizes the wave’s momentum and converts the wave’s energy to heat. When that’s gone, the wave’s gone.”

“So how’s sound different from that?”

“Lots of ways. To begin with, wind and gravity move molecules up and down perpendicular to the wave’s direction of travel. Sound waves aren’t affected by gravity. They move molecules back and forth parallel to the wave’s direction.”

“But they still die out, right? Turn to heat and all that?”

“Absolutely, Mr Feder. How fast a wave dies out depends on what heat-conversion processes are in play. In a water wave gravity and surface tension work together to smooth things out. Neither’s active in sound waves. The only way a sound wave can lose energy is through random collisions between molecules that aren’t in sync with the wave. Could be the wave hits a mushy object or maybe it just gets buried in other waves.”

“Like at a football game, when everyone’s shouting but all you hear is the roar.”

“Pretty good example, Mr Feder.”

“So how’s a light wave different?”

“Light waves don’t even need molecules. The electromagnetic field near a particle is the net effect of all the attractions and repulsions it feels from all other charged particles everywhere in the Universe. When some charged particle somewhere moves, that changes the field. The change is transmitted throughout the field as a wave traveling at the speed of light.”

“What makes it die away?”

“It doesn’t. On a dark, clear night your eyes can see stars a quintillion miles away. Astronomers with their instruments can detect objects millions of times further away.”

“No smoothing out? How come?”

“That’s a very deep question, Mr Feder, one that really bothered Einstein. You’d think a photon’s wave would get fainter the further it spreads. In fact, it delivers all its energy to the first charged particle it can interact with, no matter how far it had traveled. Weird, huh?”

“Weird, all right. So we got these three very different things — they start different, they push different, they got different speeds, they die different, but we call them all waves. Why’s that?”

“They’re all waves because they’re all patterns that transmit energy and momentum across space. Physicists have found general rules that apply to the patterns, whatever the wave type. Equations that work for one kind work for many others, too.”

Gravity waves?”

“And gravitational waves.”

~~ Rich Olcott