What Time Is It on Mars?

I’m puffing a little after hiking up a dozen flights of stairs. That whole bank of Acme Building elevators is closed off while the repair crew tries to free up the one that trapped us. The crowd waiting for the other bank is forgetaboutit. I unlock my office door and there’s Vinnie, tinkering with the thermostat. “Geez, Sy, it’s almost as cold in here as it is out in the hall. Hey, ya think there’s anything to the rumor that building management is gonna rent out that elevator as office space? And how does time work on Mars?”

“Morning, Vinnie. You’re right, I don’t think so, and where’d that last question come from?”

“I been thinking about those ultra-accurate clocks and how they’d play into that relativity stuff we talked about with Ramona.” <short lull in the conversation as we both consider Ramona> “Suppose there’s one of those clocks in a satellite going around Earth. If I remember right, it’s going ZIP around the planet so its clock ought to run faster than my wristwatch, but it’s further out of Earth’s gravity well so its clock ought to run slower. Which would win?”

“You remembered right — you’ve got Special Relativity and General Relativity in a couple of nutshells, and yes, they sometimes work in opposite directions. You have to look at the numbers. Give me a sec to work up a few examples on Old Reliable… OK, let’s start with the speed part. That’s Special Relativity because they both start with ‘SP’.”


“I thought so.  OK, here’s a handful of locations and their associated straight-line speeds relative to some star far away. That last column shows a difference factor for a clock at each location compared to a far-away motionless clock in a zero gravitational field. Multiply the factor by 86,400 seconds per day to get the time difference per day. The fastest thing on the list is that spacecraft we’re sending to the Sun by way of some slingshot maneuvers around Venus to speed it up. The Special Relativity difference comes to less than two nanoseconds per day. That’s barely in the range we can detect. It’s way less for everyplace else. ”

“Hey, Mars is down at the bottom. Lemme think why… OK, slower rotation than Earth’s, AND smaller radius so you don’t move as far for the same degrees of spin, so the formula barely subtracts anything from 1.0, right?”

“Yup, the slower you go compared to lightspeed the smaller the time adjustment. The difference between unity and the ratio for a point on Mars’ surface is so small that Old Reliable suffered a floating-point underflow trying to calculate it. That’s hard to make it do. Bottom line, the SR effect doesn’t really kick in unless you’re going faster than practically everything larger than an atom.”

“So how about the gravity wells? I’ll bet the deeper the well, the more time gets stretched.”

“Good bet. The well gets deeper as the attracting mass increases. But your clock feels less of a squeeze if it’s further away. The net effect is controlled by the mass-to-distance ratio inside that square root. Worst case in this table is at the top. A clock embedded in the Sun’s photosphere loses 0.00212*(86400 sec/day)=183 seconds compared to a far-away motionless clock in free-fall. We here on Earth lose 912 milliseconds a day total, but the astronauts on the ISS lose about 3 milliseconds less than we do because they’re further away from Earth’s center.”

“Yeah, I read about those twin astronauts. The one flying on the ISS didn’t get older as fast as the one that stayed on Earth.”

“About a second’s-worth over a year. So, do you have your relativity and Mars-time answer?”

“Sorta. But what time is it up there right now?”

“Hey, Mars is a whole world and has different times at different places just like Earth does. Wherever you are on Mars, ‘noon’ is when the Sun is overhead. Mars spins about 3% slower than Earth does — noon-to-noon there is Earth’s 24 hours plus 37 minutes and change. Add in the net 340-millisecond relativistic daily drift away from Earth time. No way can you sync up Earth and Mars times.”

“Nothin’s simple, huh?”

~~ Rich Olcott