Myopic Astronomy

Cathleen goes into full-on professor mode. “OK folks, settle down for the final portion of “IR, Spitzer and The Universe,” our memorial symposium for the Spitzer Space Telescope which NASA retired on January 30. Jim’s brought us up to speed about what infra-red is and how we work with it. Newt’s given us background on the Spitzer and its fellow Great Observatories. Now it’s my turn to show some of what Astronomy has learned from Spitzer. Thousands of papers have been published from Spitzer data so I’ll just skim a few highlights, from the Solar System, the Milky Way, and the cosmological distance.”

“Ah, Chinese landscape perspective,” murmurs the maybe-an-Art-major.

“Care to expand on that?” Cathleen’s a seasoned teacher, knows how to maintain audience engagement by accepting interruptions and then using them to further her her own presentation.

“You show detail views of the foreground, the middle distance and the far distance, maybe with clouds or something separating them to emphasize the in‑between gaps.”

“Yes, that’s my plan. Astronomically, the foreground would be the asteroids that come closer to the Earth than the Moon does. Typically they reflect about as much light as charcoal so our visible-light telescopes mostly can’t find them. But even though asteroids are as cold as interplanetary space that’s still above absolute zero. The objects glow with infra-red light that Spitzer was designed to see. It found hundreds of Near-Earth Objects as small as 6 meters across. That data helped spark disaster movies and even official conversations about defending us from asteroid collisions.”

<A clique in the back of the room> “Hoo-ahh, Space Force!

Some interruptions she doesn’t accept. “Pipe down back there! Right, so further out in the Solar System, Spitzer‘s ability to detect glowing dust was key to discovering a weird new ring around Saturn. Thanks to centuries of visible‑range telescope work, everyone knows the picture of Saturn and its ring system. The rings together form an annulus, an extremely thin circular disk with a big round hole in the middle. The annulus is bright because it’s mostly made of ice particles. The annulus rotates to match Saturn’s spin. The planet’s rotational axis and the annulus are both tilted by about 27° relative to Saturn’s orbit. None of that applies to what Spitzer found.”

Vinnie’s voice rings out. “It’s made of dust instead of ice, right ?”

Cathleen recognizes that voice. “Good shot, Vinnie, but the differences don’t stop there. The dust ring is less a disk than a doughnut, about 200 thousand times thicker than the icy rings and about 125 times wider than the outermost ice ring. But the weirdest part is that the doughnut rotates opposite to the planet and it’s in Saturn’s orbital plane, not tilted to it. It’s like the formation’s only accidentally related to Saturn. In fact, we believe that the doughnut and its companion moon Phoebe came late to Saturn from somewhere else.”

She takes a moment for a sip of coffee. “Now for the middle distance, which for our purpose is the stars of the Milky Way. Spitzer snared a few headliners out there, like TRAPPIST-1, that star with seven planets going around it. Visible-range brightness monitoring suggested there was a solar system there but Spitzer actually detected light from individual planets. Then there’s Tabby’s Star with its weird dimming patterns. Spitzer tracked the star’s infra‑red radiance while NASA’s Swift Observatory tracked the star’s emissions in the ultra‑violet range. The dimming percentages didn’t match, which ruled out darkening due to something opaque like an alien construction project. Thanks to Spitzer we’re pretty sure the variation’s just patchy dust clouds.”

Spitzer view of the Trifid Nebula
Credit: NASA/JPL-Caltech/J. Rho (SSC/Caltech)

<from the crowd in general> “Awww.”

“I know, right? Anyway, Spitzer‘s real specialty is inspecting warm dust, so no surprise, it found lots of baby stars embedded in their dusty matrix. Here’s an example. This image contains 30 massive stars and about 120 smaller ones. Each one has grown by eating the dust in its immediate vicinity and having lit up it’s now blowing a bubble in the adjacent dust.” <suddenly her cellphone rings> “Oh, sorry, this is a call I’ve got to take. Talk among yourselves, I’ll be right back.”

~~ Rich Olcott

How Many Ways Can You Look at The Sky?

Cathleen and I were discussing her TRAPPIST-1 seminar in Al’s coffee shop when a familiar voice boomed over the room’s chatter.

“Hey, Cathleen, I got questions.”


“Yeah, Sy, he hangs out with the Astronomy crew sometimes.  You know him, too, huh?”

“From way back.  Long story.”

“What’re your questions, Vinnie?”

“I missed the start of your talk, Cathleen, but why so much hype about this TRAPPIST-1 system?  We’ve already found 3,500 stars with planets, right, and some of them have several.  What’s so special here?”

“You’re right, Vinnie, Kepler-90 has seven planets, just like TRAPPIST-1. (brandishes a paper napkin)  But that star’s more than 60 times further from us than TRAPPIST-1 is.  It’s just too far away for us to be able to learn much more about the planets than their masses and orbital characteristics.  This new system’s only 40 lightyears away, close enough that we’ve got a hope of seeing what’s in the planetary atmospheres.”

(another paper napkin)  “That ties in with the second thing that’s special.  The star’s surface temperature, 2550ºK, is so low that even though its planets orbit very close in, three of them are probably in the Goldilocks Zone.  They’re not too hot and not too cold for liquid water to exist on their surface.  IF there’s liquid water on one of them and IF there’s something living there, we should be able to detect traces of that biochemistry in the planet’s atmosphere.”

Star demographics
Observational data (dots) and four different models
of star count (vertical axis) versus temperature.
Hotter stars are to the left.

(napkin #3)  “The third special thing is that TRAPPIST-1 is the first-known planet-hosting star in its category — ultra-cool dwarf stars burning below 2700°K.  Finding those stars is hard — they’re small and dim.  No-one really knows how many there are compared to the other categories.  Some models say they should be rare, other models suggest they could be as common as G-type stars like our Sun.  IF there’s lots of ultra-cool dwarfs and IF they generally have planets like G-type stars do, then the category’s a new prime target for exoplanet hunters seeking life-signs.”

“Why’s that?”

“Because it’s easier to spot a small planet around a small star than around a big one.  Transits across TRAPPIST-1 dim its light by 1% or so.  A TRAPPIST-1 planet transiting our Sun would dim it by 1/100th of that.  The same problem hinders planet-finding methods fishing for stars that wobble because a planet’s orbiting around it.”

“Alright, I get that TRAPPIST-1 is special.  My other question is, I heard the part of your talk where you figured the odds on seeing its transits, but you lost me with the word steradian.  My dictionary says that’s an area on a sphere divided by the square of the sphere’s radius. What would that get me?  Where’d your numbers come from?”

“You need one additional piece of information.  If you take any sphere’s total surface area and divide that by r², you’ll always get 4π steradians.  You can use that to convert between absolute surface area and fraction of the sphere.  Mmm…  Sy, you own some land outside of town, yes?”

“A little.”

“And you have mineral rights?”

“Oh, yeah, that’s why I bought it.”

“And they go how far down?”

“All the way to the center of the Earth.”

“So your claim’s actually a pyramid 6370 kilometers deep.  When I moved here I learned it’s impolite to ask how much land someone has.  For round numbers I’ll assume 40 acres, which is about 1,000 square meters.  (tapping keys on her smartphone)  The Earth’s radius is 6.37×106 meters, so Sy’s claim is 1,000/(6.37×106)2 = 2.47×10-11 steradians.  Divide 4π by that and you get … 5.08×1011.  So Earth’s entire surface has room for 5.08×1011 patches matching Sy’s.  Visualize 5.08×1011 pyramids pointing in every direction from Earth’s center.  Now extend each pyramid outward to define a separate patch of sky.  Got that picture, Vinnie?”viewing cones

“Sort of.”

“TRAPPIST-1 is 3.74×1017 meters away.  TRAPPIST-1h’s orbit is a near-circle whose radius is 9.45×109 meters.  It covers π(9.45×109)2/(3.74×1017)2 = 2.00×10-15 steradians on a sphere centered on us. Divide 4π by 2.00×10-15 …  6.27×1015 sky-patches the size of TRAPPIST-1h’s orbit.  They had to pick the right patch to find TRAPPIST-1.”

“Long odds.”


~~ Rich Olcott

The New System’s in Tune

<We interrupt our running story line to bring you this important development…>

“Morning, Sy.  What can I get you?”

“My usual mugfull of black, Al.  What’s the Scone-of-The-Day?”

“I’m calling this The Trappist.  It’s got raspberry jam!”

“Why that name?”

“In honor of TRAPPIST-1, you know, that star they just found a bunch of planets around.”

“Your coffee shop being right next to the Astronomy building, I guess you’ve heard a lot about it.”

“Sy, you couldn’t believe.  The planetologists are going nuts of course, even though no-one’s actually seen the planets, and the astrometrics folks are lining up for telescope time ’cause they’ve got a whole new class of stars to monitor and of course the astrophysicists get to figure out how the system even works.”

“Astrometrics folks?  New class of stars?”

“Yeah, the high-precision star-measurers.  They didn’t used to pay attention to the small, dim stars because why bother.  But now … woo-hoo, whole new ballgame.”

“Nobody’s seen those planets?  How do they know they’re there?”

“Process of elimination, Sy.  The TRAPPIST telescopes picked up repetitive dark blips in the light coming from that star.  It’s a close, fast-moving star so there’s no sense supposing it’s like going behind or in front of a regular array of rocks or stars or something.  It’s not wobbling side-to-side like it would if it was a binary so it’s not traveling along with another star.  If the blips were sunspots going around as the star rotates there’d be only one rhythm, but these blips come in too complicated for that.  Besides, the star’s low-activity, too cool for lotsa sunspots.  Gotta be planets eclipsing it.”

NASA’s artistic (and cute) rendition
of the TRAPPIST-1 system
Note the close-in steam and the frost further out

“Sounds pretty good, but…”

“Hey Sy, there was something else, maybe you could explain it.  One astrophysics guy was real impressed that the planets had residences.  I didn’t understand that.”

“Residences?  That’s a new one on me.”

“Had something to do with the blip periods.  Yeah, here’s the paper napkin he wrote ’em all down on.”

Period, days
Actual /

“Oh, resonances! That I recognize, and yeah, those numbers are much more convincing.  Remember my post about gear logic?”

“Sorry, Sy, that must’ve been a long time ago and who has time to read?”

“I understand.  OK, that post explained how planets that survive the early chaos of a forming solar system tend to wind up in orbits whose relative year-lengths form ratios of small whole numbers.  In our system, for instance, the length of Pluto’s year is exactly 3/2 of Neptune’s, Neptune’s year is twice that of Uranus, and so on.  If a planet doesn’t synch up with its neighbors, it’ll collide with someone or be flung out of the system.  Put another way, a system’s not stable if its planetary orbit periods are just any old numbers.  Make sense?”

“I suppose, so…?”

“So look at this guy’s table.  The periods of each pair of adjacent objects follow that rule almost exactly.  Five times c‘s period is less than 0.25% away from eight times b‘s, and so on all the way out to h, which I take it has an uncertain period because the guy put in that question mark.  In fact, I think this system follows the rule more tightly than our Solar System does.  As far as I’m concerned that regularity in the periods makes the case for TRAPPIST-1 having planets.  You hear anything else?”

“Yeah, there was a lot of excitement about the middle three planets being in some kind of Goldilocks zone.  What’s that about?”

“Hah, I’d be excited, too.  If a planet’s too close to the star, like Mercury is to ours, it’ll be too hot for liquid water.  If the planet’s too far, any water it has would be frozen stiff.  Either way, not good for life to grow there.  In the Goldilocks zone, it’s…”

“Just right, huh, Sy?”

“On the nose, Al.  I’m going to have to read up on TRAPPIST-1.”

~~ Rich Olcott