Red Harvest

<continued> Al’s coffee shop was filling up as word got around about Anne in her white satin.  I saw a few selfie-takers in the physics crowd surreptitiously edge over to get her into their background.  She was busy thinking so she didn’t notice.  “The entropy-elephant picture is starting to come together, Sy.  We started out with entropy measuring accumulated heat capacity in a steam engine.”

“That’s where Carnot started, yes.”

“But when Jeremy threw that hot rock into the black hole” <several in the astronomy crew threw startled looks at Jeremy>, “its heat energy added to the black hole’s mass, but it should have added to the black hole’s entropy, too.  ‘Cause of Vinnie’s Second Law.”white satin and black hole 3

Vinnie looked up.  “Ain’t my Second Law, it’s thermodynamics’ Second Law.  Besides, my version was ‘energy’s always wasted.’  Sy’s the one who turned that into ‘entropy always increases.'”

“So anyway, black holes can’t have zero entropy like people used to think.  But if entropy also has to do with counting possibilities, than how does that apply to black holes?  They have only one state.”

“That’s where Hawking got subtle.  Jeremy, we’ve talked about how the black hole’s event horizon is a mathematical abstraction, infinitely thin and perfectly smooth and all that.”

“Yessir.”

“Hawking moved one step away from that abstraction.  In essence he said the  event horizon is surrounded by a thin shell of virtual particles.  Remember them, Jeremy?”

“Uh-huh, that was on my quest to the event horizon.  Pairs of equal and opposite virtual particles randomly appear and disappear everywhere in space and because they appear together they’re entangled and if one of them dips into the event horizon then it doesn’t annihilate its twin which — Oh!  Random!  So what’s inside the event horizon may have only one state, so far as we know, but right outside the horizon any point may or may not be hosting, can I call it an orphan particle?  I’ll bet that uncertainty give rise to the entropy, right?”

<finger-snaps of approval from the physics side of the room>

“Well done, Jeremy!  ‘Orphan’ isn’t the conventional term but it gets the idea across.”

“Wait, Sy.  You mentioned that surface area and entropy go together and now I see why.  The larger the area, the more room there is for those poor orphans.  When Jeremy’s rock hit the event horizon and increased the black hole’s mass, did the surface area increase enough to allow for the additional entropy?” <more finger-snapping>

“Sure did, Anne.  According to Hawking’s calculation, it grew by exactly the right amount.  Mass and area both grow as the square of the diameter.”

“How come not the radius?”

“Well , Vinnie, the word ‘radius‘ is tricky when you’re discussing black holes.  The event horizon is spherical and has a definite diameter — you could measure it from the outside.  But the sphere’s radius extends down to the singularity and is kind of infinite and isn’t even strictly speaking a distance.  Space-time is twisted in there, remember, and that radial vector is mostly time near its far end.  On the other hand, you could use ‘radius‘ to mean ‘half the diameter‘ and you’d be good for calculating effects outside the event horizon.”

“OK, that’s the entropy-area connection, but how does temperature tie in with surface gravity?”

“They’re both inversely dependent on the black hole’s mass.  Let’s take surface gravity first, and here when I say ‘r‘ I’m talking ‘half-diameter,‘ OK?”

“Sure.”

“Good.  Newton taught us that an object with mass M has a gravitational attraction proportional to M/r².  That still holds if you’re not inside the event horizon.  Now, the event horizon’s r is also proportional to the object’s mass so you’ve got M/M² which comes to 1/M.  With me?”

“Yeah.”

“Hawking used quantum physics to figure the temperature thing, but here’s a sloppy short-cut.  Anne, remember how we said that entropy is approximately heat capacity divided by temperature?”

“Mm-hmm.”

“The shell’s energy is mostly heat and proportional to M.  We’ve seen the shell’s entropy is proportional to .  The temperature is heat divided by entropy.  That’s proportional to M/M² which is the same 1/M as surface gravity.” <boos from all sides>. “Hey, I said it was sloppy.”

~~ Rich Olcott

Advertisements

Baseball And The Virtual Particle

Al was pouring my mugful of his morning blend (“If it doesn’t wake you up we’ll call the doctor“) when Jeremy stepped into the counter.  “Hi, Mr Moire.  I’m still trying to get my head around that virtual particle thing.  Hi, Al, a large decaf, please, double sugar, three creamers.  It looks like the shorter amount of time you give a particle to happen, the bigger it can get, but that doesn’t make sense because I’d think the longer you wait the more likely it’s gonna happen.  Thanks, Al.”

“Take a breath to blow on that coffee, Jeremy, or you’ll burn your tongue.  Hmm…  Word is your batting average is running about 250 these days.  That right?”

“Yessir.  I didn’t know you’re keeping track.”

“Keeping my ears open is part of my job.  So you’re hitting about once every four at-bats.  That gives Coach an estimate of when you’ll get your next hit.  What’s your slugging average?”

“What’s a slugging average?”

“Your total number of batted-on bases, divided by your at-bats, times a thousand ’cause sports writers don’t do decimal points.  You get one count in the numerator for a single, two for a double and so on.”

“Lemme think.  If I’m doing 250 overall and about half are singles and the other half are doubles that’d give me an SA of … about 375.”

“Pretty good.  So does that number tell Coach anything about when to expect another double?”

“Mmm, no, but what does that have to do with my virtual particle question?”

“In each case you’ve got a pair of statistics that tell you some things and hide other things.  Batting averages and your wait-time notion are about when to expect an event of some sort to occur.  You could hit another single or you could tag a homer — all Coach knows is that you should be able to get on base about once every four at-bats.”

“What about the other statistics?”

“They’re the flip side, sort of.  You could think of the SA as batting potential.  If you hit homers all the time your SA would be 4000.  If you whiff every pitch your SA would be zero.  Anything between those extremes tells Coach something about your productivity but nothing about when you’re going to produce.  Energy uncertainty works the same way for virtual particles.  If you’re doing long-duration energy evaluations you can be pretty sure that any single measurement will be close to the long-term average.  You might possibly see a significant deviation from that average but only if you check just the right brief interval.”Virtual baseball

“And for the particles in that empty space?”

“If you’re looking long-term, no particles.  That’s what ’empty’ means.  When there’s definitely nothing in a volume of space it makes sense to say its energy is zero because particles have mass and therefore embody energy.  But a particle might show up and go away after a very brief interval without significantly affecting that long-term average.  Quantum theory doesn’t say it will show up, just that it might.”

“So does it?”

“Oh yes, in space, in the lab and in commerce.  One explanation for your cell phone’s NFC function hinges on virtual radio-frequency photons being exchanged between devices.”

“Wait.  If a virtual particle shows up in that empty space, then it’s not empty any more and its energy isn’t zero any more, is it?”

“You’ve just discovered one aspect of zero-point energy, the quantum prediction that every system, even empty space, contains a non-zero minimum amount of energy.  People have thought about tapping that energy to power perpetual motion machines.”

“That’d be cool — the ultimate renewable.”

“Wouldn’t it, though?  But no can do, for a couple of reasons.  Virtual particles, by their nature, are random phenomena.  You can’t depend upon what kind of particle might show up, or when, nor how long it might hang around.  It’s not like NFC where antennas generate the particles.  The other issue is that ‘minimum’ means minimum.  If you could pull energy out of that space you’d lower its energy content and drop it below the minimum…. What’s the grin about?”

“Just wondering how they’d score hitting a virtual ball that disappears before the fielder catches it.”

~~ Rich Olcott

Virtualosity

No knock, the door just opened suddenly.

“Hello, Jeremy.  Rule of Three?”

“Huh?  No, I was down the hall just now when I saw you go into your office so I knew you hadn’t gotten busy with something yet.  Sir.  What’s the Rule of Three?”

“Never mind.  You’re up here about virtual particles, I guess.”

“Yessir.  You said they’re ‘now you might see them, now you probably don’t.’  What’s that about and what do they have to do with abstraction and Einstein’s ‘underlying reality’?”

“What have you heard about Heisenberg’s Uncertainty Principle?”

“Ms Plenum says you can’t know where you are and how fast you’re going.”

“Ms Plenum’s got part of the usual notion but she’s missing the idea of simultaneous precision and a few other things.  Turns out you CAN know approximately where you are AND approximately how fast you’re going at a particular moment, but you can’t know both things precisely.  There’s going to be some imprecision in both measurements.  Think about Coach using a radar gun to track a thrown baseball.  How does radar work?”

“It bounces a light beam off of something and measures the light’s round-trip travel time.  I suppose it multiplies by the speed of light to convert time to distance.”

“Good.  Now how does it get the ball’s speed?”

“Uhh… probably uses two light pulses a certain time apart and calculates the speed as distance difference divided by time difference.”

“Got it in one.  Now, suppose that a second after the ball’s thrown the radar says the ball is 61 feet away from the plate and traveling at 92 mph.  Air resistance acts to slow the ball’s flight so that 92 is really an average.   Maybe it was going 92.1 mph at the first radar pulse and 91.9 mph at the second pulse.  So that reported speed has an 0.2 mph range of uncertainty.”

“Oh, and neither of the two pulses caught the ball at exactly 61 feet so that’s uncertain, too, right?”

“There you go.  We know the two averages, but each of them has a range.  The Uncertainty Principle says that the product of those two ranges has to be greater than Planck’s constant, 10-34 Joule·second.  Plugging that Joule-fraction and the mass of an electron into Einstein’s E=mc², we restate the constant as about 10-21 of an electron-second.  Those are both teeny numbers — but they’re not zero.”

“So speed and location make an uncertainty pair.  Are there others?”Zebras“A few.  The most important for this discussion is energy and time.”

“Wait a minute, those two can’t be linked that way.”

“Why not?”

“Well, because … umm … speed is change of location so those two go together, but energy isn’t change of time.  Time just … goes, and adding energy won’t make it go faster.”

“As a matter of fact, there are situations where adding energy makes time go slower, but that’s a couple of stories for another day.  What we’re talking about here is uncertainty ranges and how they combine.  Quantum theory says that if a given particle has a certain energy, give or take an energy range, and it retains that energy for a certain duration, give or take a time range, then the product of the two ranges has to be larger than that same Planck constant.   Think about a 1-meter cube of empty space out there somewhere.  Got it?

“Sure.”

“Suppose a particle appeared and then vanished somewhere in that cube sometime during a 1-second interval.  What’s the longest time that particle could have existed?”

“Easy — one second.”

“How about the shortest time?”

“Zero.  Wait, it’d be the smallest possible non-zero time, wouldn’t it?”

“Good catch.  So what’s the time uncertainty?”

“One second minus that tiniest bit of time.”

“And what’s the corresponding energy range?”

“That constant number that I forget.”

“10-21 electron-second’s worth.  Now let’s pick a shorter interval.  What’s the mass range for a particle that appears and disappears sometime during the 10-19 second it takes a photon to cross a hydrogen atom?”

“That’s 10-21 electron-second divided by 10-19 second, so it’d be, like, 0.01 electron.”

“How about 1% of that 10-19 second?”

“Wow — that’d be a whole electron.”

“A whole electron’s worth of uncertainty.  But is the electron really there?”

“Probably not, huh?”

“Like I said, ‘Now you probably don’t’.”

~~ Rich Olcott

Abstract Horses

It was a young man’s knock, eager and a bit less hesitant than his first visit.

“C’mon in, Jeremy, the door’s open.”

“Hi, Mr Moire, it’s me, Jerem…  How did ..?  Never mind.  Ready for my black hole questions?”

“I’ll do what I can, Jeremy, but mind you, even the cosmologists are still having a hard time understanding them.  What’s your first question?”

“I read where nothing can escape a black hole, not even light, but Hawking radiation does come out because of virtual particles and what’s that about?”

“That’s a very lumpy question.  Let’s unwrap it one layer at a time.  What’s a particle?”

“A little teeny bit of something that floats in the air and you don’t want to breathe it because it can give you cancer or something.”

“That, too, but we’re talking physics here.  The physics notion of a particle came from Newton.  He invented it on the way to his Law of Gravity and calculating the Moon’s orbit around the Earth.  He realized that he didn’t need to know what the Moon is made of or what color it is.  Same thing for the Earth — he didn’t need to account for the Earth’s temperature or the length of its day.  He didn’t even need to worry about whether either body was spherical.  His results showed he could make valid predictions by pretending that the Earth and the Moon were simply massive points floating in space.”

Accio abstractify!  So that’s what a physics particle is?”

“Yup, just something that has mass and location and maybe a velocity.  That’s all you need to know to do motion calculations, unless the distance between the objects is comparable to their sizes, or they’ve got an electrical charge, or they move near lightspeed, or they’re so small that quantum effects come into play.  All other properties are irrelevant.”

“So that’s why he said that the Moon was attracted to Earth like the apple that fell on his head was — in his mind they were both just particles.”

“You got it, except that apple probably didn’t exist.”

“Whatever.  But what about virtual particles?  Do they have anything to do with VR goggles and like that?”

“Very little.  The Laws of Physics are optional inside a computer-controlled ‘reality.’  Virtual people can fly, flow of virtual time is arbitrary, virtual electrical forces can be made weaker or stronger than virtual gravity, whatever the programmers decide will further the narrative.  But virtual particles are much stranger than that.”

“Aw, they can’t be stranger than Minecraft.  Have you seen those zombie and skeleton horses?”Horses

“Yeah, actually, I have.  My niece plays Minecraft.  But at least those horses hang around.  Virtual particles are now you might see them, now you probably don’t.  They’re part of why quantum mechanics gave Einstein the willies.”

“Quantum mechanics comes into it?  Cool!  But what was Einstein’s problem?  Didn’t he invent quantum theory in the first place?”

“Oh, he was definitely one of the early leaders, along with Bohr, Heisenberg, Schrödinger and that lot.  But he was uncomfortable with how the community interpreted Schrödinger’s wave equation.  His row with Bohr was particularly intense, and there’s reason to believe that Bohr never properly understood the point that Einstein was trying to make.”

“Sounds like me and my Dad.  So what was Einstein’s point?”

“Basically, it’s that the quantum equations are about particles in Newton’s sense.  They lead to extremely accurate predictions of experimental results, but there’s a lot of abstraction on the way to those concrete results.  In the same way that Newton reduced Earth and Moon to mathematical objects, physicists reduced electrons and atomic nuclei to mathematical objects.”

“So they leave out stuff like what the Earth and Moon are made of.  Kinda.”

“Exactly.  Bohr’s interpretation was that quantum equations are statistical, that they give averages and relative probabilities –”

“– Like Schrödinger’s cat being alive AND dead –”

“– right, and Einstein’s question was, ‘Averages of what?‘  He felt that quantum theory’s statistical waves summarize underlying goings-on like ocean waves summarize what water molecules do.  Maybe quantum theory’s underlying layer is more particles.”

“Are those the virtual particles?”

“We’re almost there, but I’ve got an appointment.  Bye.”

“Sure.  Uhh… bye.”

~~ Rich Olcott