A Brief History of Atmospheres

miller-ureyLong ago in a far-away career, I taught a short-course about then-current theories on the origin of life.  The lab portion of the course centered on the 1952 Miller-Urey experiment the first demonstration that amino acids could be produced abiotically.

Imagine my surprise when I learned that Miller’s original lab apparatus is on exhibit at the Denver Museum of Nature and Science, where I volunteer now.

The diagram’s notes describe the basic experiment.  Load up the system with whatever gases you think might have been in the primeval atmosphere.  Start cooling water running through the condenser (double-wall tubing below the upper sphere) and gently heat the water sample you’ve put in the bottom sphere.  Vapors travel up the tube into the top sphere where there’s a spark arcing between two electrodes (the black lines at 45º).  Water vapor passing by sweeps any gas-spark reaction products back down to the bottom sphere.

Let the whole thing stew for a while (Miller ran his for a week, we let ours go for two), then draw off and analyze a sample of the solution in the bottom sphere.  In Stanley’s day his analytical techniques found 5 amino acids.  In 1971 (I think) we found (I think) 8 or 9.  More recent work-ups of Miller’s sealed original samples found 25, including all 20 considered essential to life.  So yeah, if you supply enough energy to a methane-ammonia-water system (Miller added hydrogen to that; we didn’t, for safety reasons) you can make the building blocks for proteins.

The experiment has been repeated probably thousands of times by different researchers in the last half-century.  Some replications were duplicates of Miller’s, some started with recipes derived from other theories about what Earth’s early atmosphere looked like.

And there’s the problem.  In Miller’s day we thought that Earth’s atmosphere was basically comet-tail concentrate.  That’d be mostly water vapor along with a couple of volatiles like methane and ammonia.  Later on we realized that much of our atmosphere is volcano belch — a hodgepodge of carbon dioxide, carbon monoxide, methane, hydrogen, sulfur gases, nitrogen, argon, helium, various acids, multiple kinds of rock dust….  Some of that is left-overs from Earth’s initial stages; some has been generated by subsequent geological processes like serpentinization, which can generate both methane and hydrogen.

If you’re running a Miller experiment you’re free to load the apparatus with whatever mixture you think other scientists might think is reasonable for an Earth on the verge of Biology.  No oxygen, though — the chemistry of ancient rocks rules out significant atmospheric O2 before about 3½ billion years ago.

Now the researchers are playing variations on the theme, asking whether conditions on (or within) Titan could also generate complex compounds that given a billion years could self-organize into anything we’d recognize as life.  So what did Titan’s atmosphere look like a few billion years ago?

That’s a toughie, because we don’t have on-the-ground (or out-of-the-ground) data like we have for Earth.  We’ll have to make do with theory, which starts with this chart.

Molecular escape velocities

At any given temperature you can calculate the average energy per gas molecule (any kind of gas).  Combine that with the known mass of a specific kind of molecule and you can compute its speed.

On any given world you can calculate the minimum speed (the escape velocity) that an object (rocket, rock or gas molecule) needs to have in order to overcome the world’s gravitational pull.

The chart combines both calculations for some important molecules for worlds in the Solar System that have atmospheres.  For instance, Earth’s average temperature (give or take a few dozen degrees) is  300ºK=27ºC≈80ºF.  From the chart, hydrogen and helium should be able to (and do) leave our atmosphere quickly.  However, Earth’s gravity is sufficient to hold onto its original dowry of the heavier species.  By contrast, the four massive planets would have to warm up by hundreds of degrees before they lose even the light gases.

Sure enough, Titan’s atmosphere is mostly nitrogen.  The astronomers measure its methane and hydrogen content in parts per thousand but those concentrations aren’t the same going from top to bottom of Titan’s atmosphere.  Therein lies an intriguing tale, but it’ll have to wait for the next post.

~~ Rich Olcott

Fifty Shades of Ice


This week we dip a little deeper into Titan’s weirdness trove.  Check the diagram.  Two kinds of ice??!?  What’s that about?

Carbon allotropes
and water polymorphs

As everyone knows, diamonds and pencil lead (graphite, and I loved learning that graphite is an actual dug-from-the-ground mineral whose name came from the Greek verb “to write”) are both pure carbon, mostly.  Same atoms, just arranged differently.

Graphite‘s carbon atoms are laid out in sheets of hexagons.  Adjacent sheets are bonded together but not as strongly as are the atoms within each sheet.  Sheets can slide past each other, which is why we use graphite as a lubricant and why pencils can write and erasers can unwrite.

Diamond‘s atoms are also laid out in sheets of (rumpled) hexagons, but now the bonds between sheets are identical to the bonds within a sheet.  Turn your head sideways and you’ll see that sheets run vertical, too.  In fact, each carbon atom participates in four sheets, three vertical and one horizontal.  All that symmetrical bonding makes diamond one of the hardest substances we know of.

Neighboring carbon atoms form bonds by sharing electrons between their positive nuclei.  Neighboring water molecules (H2O) don’t share electrons but they do tend to line up with their somewhat positive hydrogen atoms pointing towards nearby somewhat negative oxygens.  That’s a loose rule in liquid water but it dominates when the molecules freeze into ice.

Most of the ice on Earth has an Ice-Ih structure, where the oxygen atoms are arranged in the same pattern as the carbons are in graphite.  Water’s hexagonal sheets aren’t quite flat, but the 6-fold symmetry gives us snowflakes.  There’s a hydrogen atom between each pair of oxygens, but it’s not half-way between.  Instead, each oxygen tightly holds its own two hydrogens while it pulls at further-away hydrogens owned by two neighboring oxygens.

But water molecules have other ways to arrange themselves.  A small fraction of Earth’s ice has a diamond-like Ice-Ic structure with each oxygen participating in four hexagon sheets.  Again, hydrogens are on the lines between them.

Water’s such a versatile molecule that it doesn’t stop with two polymorphs.  Ice scientists recognize seventeen distinct crystalline varieties, plus three where the molecules don’t line up neatly.  (None of them is Vonnegut’s “Ice-nine.”)  Each polymorph exists in a  unique temperature and pressure range; each has its own set of properties.  As you might expect, ices formed at high pressure are denser than liquid water.  Fortunately, Ice-Ih is lighter than water and so ice cubes and icebergs float.

As cold as Titan is and as high as the pressure must be under 180 miles of Ice-Ih and watery ammonia sea (even at 10% of Earth’s gravity), it’s quite likely* that there’s a thick layer of Ice-something around Titan’s rocky core.

clathratesThe primary reason we think Titan is so wet is that Titan’s density is about halfway between rock and water.  We know there are other light molecules on Titan — ammonia, methane, etc.  We don’t know how much of each.  Those compounds don’t have water’s complex phase behavior but many can dissolve in it.  That’s why that hypothetical “Ammonia sea” is in the top diagram.

But wait, there’s more.  Both graphite and water ice are known to form complex polymorphs, clathrates, that host other molecules.  This diagram gives a hint of how that can happen.  Frozen water under pressure forms a large number of more-or-less ordered cage clathrate structures that can host  Titan’s molecular multitude.

At Titan’s temperatures ice rocks would be about as hard as granite.  Undoubtedly they’ll have surprising chemistry and interesting histories.  We can expect clathrate geology on Titan to be as complex as silicate geology is on Earth.

Geochemist heaven, except for the space suits.

~~ Rich Olcott

* – A caveat: we know a great deal about Earth’s structure because we live here and have been studying it scientifically for centuries. On the other hand, most of what we think we know about Titan’s interior comes from mathematical models based on gravitational observations from the Cassini mission, plus 350 photos relayed back from the Huygens lander, plus experiments in Earth-bound chemistry labs. Expect revisions on some of this stuff as we learn more.