Zeroing In on Water

<chirp, chirp> “Moire here.”

“Hi, Sy, it’s me, Vinnie. I just heard this news story about finding water on the Moon. I thought we did that ten years ago. You even wrote about it.”

“The internet never forgets, does it? That post wasn’t quite right but it wasn’t wrong, either.”

“How can it be both?”

“There’s an old line in Science — ‘Your data’s fine but your conclusions are … nuts.’ They use a different word in private. Suppose you land on a desert island and find a pirate’s treasure chest. Should the headlines say you’d found a treasure?”

“Naw, the chest might be empty or full of rocks or something.”

“Mm-hm. So, going back to that post… I was working from some reports on NASA’s Lunar Reconnaissance Orbiter. Its LAMP instrument mapped how strongly different Moon features reflected a particular frequency of ultraviolet light. That frequency’s called ‘Lyman‑alpha.’ Astronomers care about it because it’s part of starlight, it’s reflected by rock, and it’s specifically absorbed by hydrogen atoms. Sure enough, LAMP found some places, typically in deepshadow craters, that absorbed a lot more Lymanalpha than other places.”

“And you wrote about how hydrogen atoms are in water molecules and the Moon’s deep crater floors near the poles are sheltered from sunlight that’d break up water molecules so LAMP’s dark spots are where there’s water. And you liked how using starlight to find water on the Moon was poetical.”

“Uhh… right. All that made a lot of sense at the time and it still might be true. Scientists leapt to the same hopeful conclusion when interpreting data from the MESSENGER mission to Mercury. That one used a neutron spectrometer to map emissions from hydrogen atoms interacting with incoming cosmic rays. There again, the instrument identified hydrogen collected in shaded craters at the planet’s poles. Two different detection methods giving the same positive indication at the same type of sheltered location. The agreement seemed to settle the matter. The problem is that water isn’t geology’s only way or even its primary way to accumulate hydrogen atoms.”

“What else could it be? Hydrogen ions in the solar wind grab oxide ions from Moon rock and you’ve got water, right?”

“But the hydrogens arrive one at a time, not in pairs. Any conversion would have to be at least a two‑step process. The Moon’s surface rocks are mostly silicate minerals. They’re a lattice of negative oxide ions that’s decorated inside with an assortment of positive metal ions. The first step in the conversion would be for one hydrogen ion to link up with a surface oxide to make a hydroxide ion. That species has a minus‑one charge instead of oxide’s minus‑two so it’s a bit less tightly bound to its neighboring metal ions. Got that?”

“Gimme a sec … OK, keep going.”

“Some time later, maybe a century maybe an eon, another hydrogen ion comes close enough to attack our surface hydroxide if it hasn’t been blasted apart by solar UV light. Then you get a water molecule. On balance and looking back, we’d expect most of the surface hydrogen to be hydroxide ions, not water, but both kinds would persist better in shadowed areas.”

“OK, two kinds of hydrogen. But how do we tell the difference?”

“We evaluate processes at lower‑energies. Lyman‑alpha photons pack over 10 electronvolts of energy, enough to seriously disturb an atom and blow a molecule apart. O‑H and H‑O‑H interact differently with light in the infra‑red range that just jiggles molecules instead of bopping them. For instance, atom pairs can stretch in‑out. Different kinds of atom bind together more‑or‑less tightly. That means each kind of atom pair resonates at its own stretch energy, generally around 6 microns or 0.41 electronvolts. NASA’s Cassini mission had a mapping spectrometer that could see down into that range. It found O‑H stretching activity all over the Moon’s surface.”

“But that could be either hydroxyls or water.”

“Exactly. The new news is that sensors aboard NASA’s airborne SOFIA mission map light even deeper into the infra‑red. It found the 3‑micron, 0.21‑electronvolt signal for water’s V‑shape scissors motion. That’s the water that everybody’s excited about.”

“Lots of it?”

“Thinly spread, probably, but stay tuned.”

~~ Rich Olcott

Never Chuck Muck at A Duck

Mr Richard Feder of Fort Lee NJ is in terrible shape. Barely halfway into our walk around the park’s lake, he flops onto a bench to catch his breath. The geese look on unsympathetically. “<puff, puff> I got another question, Moire. <wheeze> Why is water wet?”

He’s just trying to make conversation while his heart slows down but I take him up on it. “Depends on what you mean by ‘wet‘ — that’s a slippery word, can be a verb or an adjective or a noun. If you wet something, you’ve got a wet something. If there’s wet weather you go out in the wet. If you live in a wet jurisdiction you can buy liquor if you’re old enough. You can even have wet and dry molecules. Which are you asking about?”

That’s gotten him thinking, always a good sign. “Let’s start with the verb thing. Seems like that’s the key to the others.”

“So we’re asking, ‘Does water wet?‘ The answer is, ‘Sometimes,‘ and that’s where things get interesting. That duck over there, diving for something on the bottom, but when it comes back up again the water rolls off it like –“

“Don’t say it — ‘like water off a duck’s back‘ — yeah, I know, but I’m sweating over here and that ain’t rolling off. Why the difference?”

“Blame it on the Herence twins, Co and Addie.”

“Come again?”

“A little joke, has to do with two aspects of stickiness. Adherence is … you know adhesive tape?”

“Adhe — you playin’ word games, Moire?”

“No, really, adhesive and adherence are both about sticking together things that are chemically different, like skin and tape. Coherence is about stickiness between things that are chemically similar, like sweat and skin.”

“What makes things ‘chemically similar’?”

“Polarity. I don’t want to get into the weeds here –“

“Better not, the ground’s squishy over there.”

“– but there are certain pairs of atoms, like oxygen and hydrogen, where one atom pulls a small amount of electron charge away from the other and you wind up with part of a molecule being plus-ish and another part being minus-ish. That makes the molecule polar. Other pairings, like carbon and hydrogen, are more evenly matched. You don’t get charge separation from them and we call that being non-polar. Charge variation in polar molecules forces them to cluster together positive-to-negative. The electrostatic gang crowds out any nearby non-polar molecules.”

“What’s all that got to do with wetting?”

“Water’s all oxygen and hydrogen and quite polar. Water coheres to itself. If it didn’t you’d get rain-smear instead of raindrops. It also adheres to polar materials like skin and hair and bricks, so raindrops wet them. But it doesn’t adhere to non-polar materials like oil and wax. Duck feathers are oily so they shed water.”

“So that’s why the duck doesn’t get wet!”

“Not unless you throw detergent on him, like they have to do with waterfowl after an oil spill. Detergent molecules have a polar end and a non-polar end so they can bridge the electro divide. Rubbing detergent into a dirty bird’s sludgy oil coating lets water sink into the mess and break it up so you can rinse it off. The problem is that the detergent also washes off the good duck oil. If you let a washed-off duck go swimming too soon after his bath the poor thing will sink. You have to give him time to dry off and replenish his natural feather-oil.”

“Hey, you said ‘wet-and-dry molecules.’ How can they be both?”

“Because they’re really big, thousands of atoms if they’re proteins, even bigger for other kinds of polymers. Anything that large can have patches that are polar and other patches that are oily. In fact, patchwise polarity is critical to how proteins get their 3-D structure and do their jobs. A growing protein strand wobbles around like a spring-toy puzzle until positive bits match up with negative bits and oily meets up with oily. Probably water molecules sneak into the polar parts, too. The configuration’s only locked down when everything fits.”

“So water’s wet because water wets water. Hah!”

~~ Rich Olcott

  • Thanks to Museum visitor Jessie for asking this question.

Water, Water Everywhere — How Come?

Lunch time, so I elbow my way past Feder and head for the elevator.  He keeps peppering me with questions.

“Was Einstein ever wrong?”

“Sure. His equations pointed the way to black holes but he thought the Universe couldn’t pack that much mass into that small a space.  It could.  There are other cases.”

We’re on the elevator and I punch 2.  “Where you going?  I ain’t done yet.”

“Down to Eddie’s Pizza.  You’re buying.”

“Awright, long as I get my answers.  Next one — if the force pulling an electron toward a nucleus goes as 1/r², when it gets to where r=0 won’t it get stuck there by the infinite force?”

“No, because at very short distances you can’t use that simple force law.  The electron’s quantum wave properties dominate and the charge is a spread-out blur.”

The elevator stops at 7.  Cathleen and a couple of her Astronomy students get on, but Feder just peppers on.  “So I read that everywhere we look in the Solar System there’s water.  How come?”

I look over at Cathleen.  “This is Mr Richard Feder of Fort Lee, NJ.  He’s got questions.  Care to take this one?  He’s buying the pizza.”

“Well, in that case.  It all starts with alpha particles, Mr Feder.”

The elevator door opens on 2, we march into Eddie’s, order and find a table.  “What’s an alpha particle and what’s that got to do with water?”

Alpha particle
Two protons and two neutrons, assembled as an alpha particle

“An alpha particle’s a fragment of nuclear material that contains two protons and two neutrons.  99.999% of all helium atoms have an alpha particle for a nucleus, but alphas are so stable relative to other possible combinations that when heavy atoms get indigestion they usually burp alpha particles.”

“And the water part?”

“That goes back to where our atoms come from — all our atoms, but in particular our hydrogen and oxygen.  Hydrogen’s the simplest atom, just a proton in its nucleus.  That was virtually the only kind of nucleus right after the Big Bang, and it’s still the most common kind.  The first generation of stars got their energy by fusing hydrogen nuclei to make helium.  Even now, that’s true for stars about the size of the Sun or smaller.  More massive stars support hotter processes that can make heavier elements.  Umm, Maria, do you have your class notes from last Tuesday?”

“Yes, Professor.”

“Please show Mr Feder that chart of the most abundant elements in the Universe.  Do you see any patterns in the second and fourth columns, Mr Feder?”

Element Atomic number Mass % *103 Atomic weight Atom % *103
Hydrogen 1 73,900 1 92,351
Helium 2 24,000 4 7,500
Oxygen 8 1,040 16 81
Carbon 6 460 12 48
Neon 10 134 20 8
Iron 26 109 56 2
Nitrogen 7 96 14 <1
Silicon 14 65 32 <1

“Hmm…  I’m gonna skip hydrogen, OK?  All the rest except nitrogen have an even atomic number, and all of ’em except nitrogen the atomic weight is a multiple of four.”

“Bravo, Mr Feder.  You’ve distinguished between two of the primary reaction paths that larger stars use to generate energy.  The alpha ladder starts with carbon-12 and adds one alpha particle after another to go from oxygen-16 on up to iron-56.  The CNO cycle starts with carbon-12 and builds alphas from hydrogens but a slow step in the cycle creates nitrogen-14.”

“Where’s the carbon-12 come from?”

“That’s the third process, triple alpha.  If three alphas with enough kinetic energy meet up within a ridiculously short time interval, you get a carbon-12.  That mostly happens only while a star’s going nova, simultaneously collapsing its interior and spraying most of its hydrogen, helium, carbon and whatever out into space where it can be picked up by neighboring stars.”

“Where’s the water?”

“Part of the whatever is oxygen-16 atoms.  What would a lonely oxygen atom do, floating around out there?  Look at Maria’s table.  Odds are the first couple of atoms it runs across will be hydrogens to link up with.  Presto!  H2O, water in astronomical quantities.  The carbon atoms can make methane, CH4; the nitrogens can make ammonia, NH3; and then photons from Momma star or somewhere can help drive chemical reactions  between those molecules.”

“You’re saying that the water astronomers find on the planets and moons and comets comes from alpha particles inside stars?”

“We’re star dust, Mr Feder.”

~~ Rich Olcott