How To Phase A Foe

“It’s Starfleet’s beams against Klingon shields, Vinnie. I’m saying both are based on wave phenomena.”

“What kind of wave, Sy?”

“Who knows? They’re in the 24th Century, remember. Probably not waves in the weak or strong nuclear force fields — those’d generate nuclear explosions. Could be electromagnetic waves or gravitational waves, could be some fifth or sixth force we haven’t even discovered yet. Whatever, the Enterprise‘s Bridge crew keeps saying ‘frequency’ so it’s got to have some sort of waveishness.”

“OK, you’re sayin’ whatever’s waving, if it’s got frequency, amplitude and phase then we can talk principles for building a weapon system around it. I can see how Geordi’s upping the amplitude of the Enterprise‘s beam weapons would help Worf’s battle job — hit ’em harder, no problem. Jiggling the frequencies … I sort of see that, it’s what they always talk about doing anyway. But you say messing with beam phase can be the kicker. What difference would it make if a peak hits a few milliseconds earlier or later?”

“There’s more than one wave in play. <keys clicking> Here’s a display of the simplest two-beam interaction.”

“I like pictures, but this one’s complicated. Read it out to me.”

“Sure. The bottom line is our base case, a pure sine wave of some sort. We’re looking at how it’s spread out in space. The middle line is the second wave, traveling parallel to the first one. The top line shows the sum of the bottom two at each point in space. That nets out what something at that point would feel from the combined influence of the two waves. See how the bottom two have the same frequency and amplitude?”

“Sure. They’re going in the same direction, right?”

“Either that or exactly the opposite direction, but it doesn’t matter. Time and velocity aren’t in play here, this is just a series of snapshots. When I built this video I said, ‘What will things look like if the second beam is 30° out of phase with the first one? How about 60°?‘ and so on. The wheel shape just labels how out-of-phase they are, OK?”

“Give me a sec. … OK, so when they’re exactly in sync the angle’s zero and … yup, the top line has twice the amplitude of the bottom one. But what happened to the top wave at 180°? Like it’s not there?”

“It’s there, it’s just zero in the region we’re looking at. The two out-of-phase waves cancel each other in that interval. That’s how your noise-cancelling earphones work — an incoming sound wave hits the earphone’s mic and the electronics generate a new sound wave that’s exactly out-of-phase at your ear and all you hear is quiet.”

“I’ve wondered about that. The incoming sound has energy, right, and my phones are using up energy. I know that because my battery runs down. So how come my head doesn’t fry with all that? Where does the energy go?”

“A common question, but it confuses cause and effect. Yes, it looks like the flatline somehow swallows the energy coming from both sides but that’s not what happens. Instead, one side expends energy to counter the other side’s effect. Flatlines signal success, but you generally get it only in a limited region. Suppose these are sound waves, for example, and think about the molecules. When an outside sound source pushes distant molecules toward your ear, that produces a pressure peak coming at you at the speed of sound, right?”

“Yeah, then…”

“Then just as the pressure peak arrives to push local molecules into your ear, your earphone’s speaker acts to pull those same molecules away from it. No net motion at your ear, so no energy expenditure there. The energy’s burned at either end of the transmission path, not at the middle. Don’t worry about your head being fried.”

“Well that’s a relief, but what does this have to do with the Enterprise?”

“Here’s a sketch where I imagined an unfriendly encounter between a Klingon cruiser and the Enterprise after Geordi upgraded it with some phase-sensitive stuff. Two perpendicular force disks peaked right where the Klingon shield troughed. The Klingon’s starboard shield generator just overloaded.”

“That’ll teach ’em.”

“Probably not.”

~~ Rich Olcott