Science or Not-science?

Vinnie trundles up to Jeremy’s gelato stand. “I’ll take a Neapolitan, one each chocolate, vanilla and strawberry.”

“Umm… Eddie forgot to order more three-dip cones and I’m all out. I can give you three separate cones or a dish.”

“The dish’ll be fine, way less messy. Hey, Sy, I got a new theory.”

“Mm… Unless you’ve got a lot of firm evidence it can’t be a theory. Could be a conjecture or if it’s really good maybe a hypothesis. What’s your idea?”

“Thing is, Sy, there can’t be any evidence. Ever. That’s the fun of it.”

“Conjecture, then. C’mon, out with it.”

“Well, you remember all that stuff about how time bends toward a black hole’s mass and that’s how gravity works?”

“Sure, except it’s not just black holes. Time bends the same way toward every mass, it’s just more intense with black holes.”

“Understood. Anyway, we talked once about how stars collapse to form black holes but that’s only up to a certain size, I forget what—”

“Ten to fifteen solar masses. Beyond that the collapse goes supernova and doesn’t leave much behind but dust.”

“Right. So you said we don’t know how to make size‑30 black holes like the first pair that LIGO found.”

“We’ve got a slew of hypotheses but the jury’s still out.”

“That’s what I hear. Well, if we don’t even know that much then we for‑sure don’t know how to make the supermassive black hole the science magazines say we’ve got in the middle of the Milky Way.”

“We’ve found that nearly every galaxy has one, some a lot bigger than ours. Why that’s true is one of the biggest mysteries in astrophysics.”

“And I know the answer! What if those supermassive guys started out as just big lumps of dark matter and then they wrapped themselves in more dark matter and everything else?”

“Cute idea, but the astronomy data says we can account for galaxy shapes and behavior if they’re embedded at the center of a spherical halo of dark matter.”

“Not a problem, Sy. Look at the numbers. Our superguy is a size‑4‑million, right? The whole Milky Way’s a billion times heavier than that. Tuck an extra billionth into the middle of the swirl and the stars wouldn’t see the difference.”

“Okay, but there’s more data that says dark matter spreads itself pretty evenly, doesn’t seem to clump up like you need it to.”

“Yeah, but maybe there’s two kinds, one kind clumpy and the other kind not. Only way to find out is to look inside a superguy but time blocks information flow out of there. So no‑one can say I’m wrong!”

“But sir, that’s not science!”

“Why not, kid?”

“The unit my philosophy class did on Popper.”

“The stuff you sniff or the penguins guy?”

“Neither, Karl Popper the philosopher. Dr Crom really likes Popper’s work so we spent a lot of time reading him. Popper was one of the Austrian intellectuals the Nazis chased out when they took power in the 1930s. Popper traveled around, wound up in New Zealand where he wrote his Open Society book that shredded Hegel and Marx. Those sections were fun reading even if they were wordy. Anyway, one of Popper’s big things was the demarcation problem, how to tell the difference between what’s a scientific assertion and what’s not. He decided the best criterion was if there’s a way to prove the assertion false. Not whether it was false but whether it could at least be tested. I was surprised by how many goofy things the Greeks said that would qualify as Popper‑scientific even though they were just made up and have been proven wrong.”

“Well there you go, Vinnie. Physics and the Universe don’t let us see into a supermassive black hole, therefore your idea isn’t testable even in principle. Jeremy’s right, it’s not scientific even though it’s all dressed up in a Science suit.”

“I can still call it a conjecture, though, right, Sy?”

“Conjecture it is. Might even be true, but we’ll never know unless we somehow find out something about dark matter that surprises us. We’ve been surprised a lot, though, so don’t give up hope.”

~~ Rich Olcott

Wait For It

“So, Jeremy, have I convinced you that there’s poetry in Physics?”

“Not quite, Mr Moire. Symbols can carry implications and equation syntax is like a rhyme scheme, okay, but what about the larger elements we’ve studied like forms and metaphors?”

“Forms? Hoo boy, do we have forms! Books, theses, peer-reviewed papers, conference presentations, poster sessions, seminars, the list goes on and that’s just to show results. Research has forms — theoretical, experimental, and computer simulation which is sort of halfway between. Even within the theory division we have separate forms for solving equations to get mathematically exact solutions, versus perturbation techniques that get there by successive approximations. On the experimental side—”

“I get the picture, Mr Moire. Metaphorically there’s lots of poetry in Physics.”

“Sorry, you’re only partway there. My real point is that Physics is metaphor, a whole cascade of metaphors.”

“Ha, that’s a metaphor!”

“Caught me. But seriously, Science in general and Physics in particular underwent a paradigm shift in Galileo’s era. Before his century, a thousand years of European thought was rooted in Aristotle’s paradigm that centered on analysis and deduction. Thinkers didn’t much care about experiment or observing the physical world. No‑one messed with quantitative observations except for the engineers who had to build things that wouldn’t fall down. Things changed when Tycho Brahe and Galileo launched the use of numbers as metaphors for phenomena.”

“Oh, yeah, Galileo and the Leaning Tower experiment.”

“Which may or may not have happened. Reports differ. Either way, his ‘all things fall at the same speed‘ conclusion was based on many experimental trials where he rolled balls of different material, sizes and weights down a smooth trough and timed each roll.”

“That’d have to be a long trough. I read how he used to count his pulse beats to measure time. One or two seconds would be only one or two beats, not much precision.”

“True, except that he used water as a metaphor for time. His experiments started with a full jug of water piped to flow into an empty basin which he’d weighed beforehand. His laboratory arrangement opened a valve in the water pipe when he released the ball. It shut the valve when the ball crossed a finish line. After calibration, the weight of released water represented the elapsed time, down to a small fraction of a second. Distance divided by time gave him speed and he had his experimental data.”

“Pretty smart.”

“His genius was in devising quantitative challenges to metaphor‑based suppositions. His paradigm of observation, calculation and experimental testing far outlasted the traditionalist factions who tried to suppress his works. Of course that was after a century when Renaissance navigators and cartographers produced maps as metaphors for oceans and continents.”

“Wait, Mr Moire. In English class we learned that a metaphor says something is something else but an analogy is when you treat something like something else. Water standing for time, measurements on a map standing for distances — aren’t those analogies rather than metaphors?”

“Good point. But the distinction gets hazy when things get abstract. Take energy, for example. It’s not an object or even a specific kind of motion like a missile trajectory or an ocean wave. Energy’s a quantity that we measure somewhere somehow and then claim that the same quantity is conserved when it’s converted or transferred somewhere else. That’s not an analogy, it’s a metaphor for a whole parade of ways that energy can be stored or manifested. Thermodynamics and quantum mechanics depend on that metaphor. You can’t do much anywhere in Physics without paying some attention to it. People worry about that, though.”

“Why’s that?”

“We don’t really understand why energy and our other fundamental metaphors work as well as they do. No metaphor is perfect, there are always discrepancies, but Physics turns out to be amazingly exact. Chemistry equations balance to within the accuracy of their measuring equipment. Biology’s too complex to mathematize but they’re making progress. Nobel Prize winner Eugene Wigner once wrote a paper entitled, ‘The Unreasonable Effectiveness of Mathematics in The Natural Sciences.’ It’s a concern.”

“Well, after all that, there’s only one thing to say. If you’re in Physics, metaphors be with you.”

~~ Rich Olcott

Prime Contenders

Between COVID and the post‑holiday wind‑down, things are slow. Vinnie and I are playing cards on my office side table, except my only deck is missing the heart face cards (long story) so we’re just trying to edge‑stack them. It’s not going well. “Geez, Sy, these towers collapse so quick, it’s boring. What else you got around here?”

“Well, before you arrived I was chasing prime numbers on Old Reliable for a New Year piece. Did you know, for instance, there we’re smack in the middle of a decade-long prime year dearth?”

“Prime year dearth?”

Prime as in not divisible by any number other than itself and one, dearth as in no year’s name being a prime number since 2017 and the next one isn’t until 2027. In the forty‑four years leading up to 2017 we averaged one prime per 5½ years. On the other hand, after 2029 (also a prime year, by the way) there’s fifty‑two years with only five primes.””

“Is there some rule for how many to expect?”

“Sort of. I sampled a series of hundred‑number ranges on up to a billion. The percentage of primes fell off as the numbers got larger, settled in at about 6%.”

“Makes sense — you got a bigger number, you got more little numbers that might divide into it.”

“Mm-hm. Something weird happens around ten million, though. The percentage drops down to only 2% but then it goes right back up to around 6% and stays there. I tried different scan resolutions but couldn’t locate any single especially long non‑prime string. The mathematicians have carried the research a lot further than my little experiment. The Prime Number Theorem gives a general curve that’s good ‘for sufficiently large numbers,’ but a million is a small number on their scale. As a physicist I’m a bit frustrated because the Theorem says, ‘This is the way it is‘ but it doesn’t give a reason. Although there probably isn’t a reason, any more than there’s a reason for 2017 being a prime to begin with.”

“I know what you mean. My car’s Owner Manual is the same way. Uhh… as I recall, you had a post a while ago about primes and 3’s and 7’s.”

“That was for New Year 2016, to be exact. Yeah, I found a collection of primes like 3337 and 733333 that have a string of 3’s or 7’s fronted and trailed by 3’s or 7’s. It wasn’t a bad bet. No primes (except 2 and 5) can have 0, 2, 4, 5, 6 or 8 as a trailing digit, right?”

“Lemme think for a minute. … Right.”

“That list didn’t include scrambled combinations like 37737, so what I did this year was to use Old Reliable to construct a big list of all possible 3’s‑and‑7’s numbers between 3 and a billion.”

“That’s a lot of numbers.”

“Not so many, actually, only about 1000. I told Old Reliable not to sample numbers that have any non‑3‑or‑7 digit buried in them somewhere. That’s a lot of pass‑overs.”

“That’s a lot of checking and skipping.”

“I used a short cut. It’s easy to build a list of all possible numbers with a certain number of binary digits — just count in binary. The three‑digit binary numbers, for instance, give you every zero‑one combination between 000 is zero and 111 is seven. Then I converted all the zeroes to 3’s and all the ones to 7’s and got every 3’s‑and‑7’s number between a hundred and a thousand with no interlopers. As a bonus that method organizes the overall list by powers of ten, like 333 to 777 in a sublist, 3333 to 7777 in another and so on. I counted the primes in each sublist and charted all the sublist percentages in the same graph as the hundred‑number sampling. Pretty much the same curve, but no dip near 10 million. For the heck of it I played the same game with 1’s and 9’s. Same behavior. Oh well.”

“So that’s how you keep yourself occupied on a slow day, huh? I got a New Year prediction for you.”

“What’s that?”

“I’m gonna bring you a couple fresh decks of playing cards.”

~~ Rich Olcott

Engineering A Black Hole

<bomPAH-dadadadaDEEdah> That weird ringtone on Old Reliable again. Sure enough, the phone function’s caller-ID display says 710‑555‑1701.  “Ms Baird, I presume?”

A computerish voice, aggressive but feminine, with a hint of desperation. “Commander Baird will be with you shortly, Mr Moire. Please hold.”

A moment later, “Hello, Mr Moire.”

“Ms Baird. Congratulations on the promotion.”

“Thank you, Mr Moire. I owe you for that.”

“How so?”

“Your posts about phase-based weaponry got me thinking. I assembled a team, we demonstrated a proof of concept and now Federation ships are being equipped with the Baird‑Prymaat ShieldSaw. Works a treat on Klingon and Romulan shielding. So thank you.”

“My pleasure. Where are you now?”

“I’m on a research ship called the Invigilator. We’re orbiting black hole number 77203 in our catalog. We call it ‘Lonesome‘.”

“Why that name?”

“Because there’s so little other matter in the space nearby. The poor thing barely has an accretion disk.”

“Sounds boring.”

“No, it’s exciting, because it’s so close to a theoretical ideal. It’s like the perfectly flat plane and the frictionless pulley — in real life there are always irregularities that the simple equations can’t account for. For black holes, our only complete solutions assume that the collapsed star is floating in an empty Universe with no impinging gravitational or electromagnetic fields. That doesn’t happen, of course, but Lonesome comes close.”

“But if we understand the theoretical cases and it nearly matches one, why bother with it at all?”

“Engineering reasons.”

“You’re engineering a black hole?”

“In a way, yes. Or at least that’s what we’re working on. We think we have a way to extract power from a black hole. It’ll supply inexhaustible cheap energy for a new Star Fleet anti‑matter factory. “

“I thought the only thing that could escape a black hole’s Event Horizon was Hawking radiation, and it cheats.”

“Gravity escapes honestly. Its intense field generates some unexpected effects. Your physicist Roger Penrose used gravity to explain the polar jets that decorate so many compact objects including black holes. He calculated that if a comet or an atom or something else breakable shatters when it falls into a spinning compact object’s gravitational field, some pieces would be trapped there but under the right conditions other pieces would slingshot outward with more energy than they had going in. In effect, the extra energy would come from the compact object’s angular momentum.”

“And that’s what you’re planning to do? How are you going to trap the expelled pieces?”

“No, that’s not what we’re planning. Too random to be controlled with our current containment field technology. We’re going pure electromagnetic, turning Lonesome into a giant motor‑generator. We know it has a stable magnetic field and it’s spinning rapidly. We’ll start by giving Lonesome some close company. There’s enough junk in its accretion disk for several Neptune‑sized planets. The plan is to use space tugs to haul in the big stuff and Bussard technology for the dust, all to assemble a pair of Ceres-sized planetoids. W’re calling them Pine and Road. We’ll park them in a convenient equatorial orbit in a Lagrange‑stable configuration so Pine, Road and Lonesome stay in a straight line.”

“Someone’s been doing research on old cinema.”

“The Interstellar Movie Database. Anyhow, when the planetoids are out there we string conducting tractor beams between them. If we locate Pine and Road properly, Lonesome’s rotating magnetic field lines will cross the fields at right angles and induce a steady electric current. Power for the anti‑matter synthesizers.”

“Ah, so like Penrose’s process you’re going to drain off some of Lonesome‘s rotational kinetic energy. Won’t it run out?”

Lonesome‘s mass is half again heavier than your Sun’s, Mr Moire. It’ll spin for a long, long time.”

“Umm … that ‘convenient orbit.’ Lonesome‘s diameter is so small that orbits will be pretty speedy. <calculating quickly with Old Reliable> Even 200 million kilometers away you’d circle Lonesome in less than 15 minutes. Will the magnetic field that far out be strong enough for your purposes?”

“Almost certainly so, but the gravimagnetodynamic equations don’t have exact solutions. We’re not going to know until we get there.”

“That’s how research works, all right. Good luck.”

~~ Rich Olcott

4 Tips 4 A Young Scientist

From: Robin Feder <rjfeder@fortleenj.com>
To: Sy Moire <sy@moirestudies.com>
Subj: Questions

Dear Mr. Moire, I am a High School student who has a crazy theory about dark matter. I get bored often and do not learn as much as I think most believe I should in science class. I was thinking about dark matter and how it reacts oppositely of how we expect it to. We expect it to probably not follow “normal” physics. This got me thinking about other impossible things the human mind has thought of. One of them caught my mind–absolute zero. The logic connected itself in my mind and later that day I typed up a doc just to keep my ideas. I played with it and the more I thought about it the evidence started to overlap. I have finally found an end to the theory. I am now ready to send this theory with some scientists who actually have the expertise to critique me. Please give me your thoughts as I of course am not fully confident in it. I have a lot of information that I can’t fit in one email so this is all for now. Hope to improve it. Sincerely, Robin Feder


From: Sy Moire <sy@moirestudies.com>
To: Robin Feder <rjfeder@fortleenj.com>

Subj: Re: Questions

My best to your Dad, Robin, you take after him and I’m glad you’re thinking about science. I hear you about the boring classes often feel that way if the other kids don’t pick things up as quickly as you do. Maybe your teachers can point you to supplementary materials that’ll perk up your interest.

Before we get into your topics I’ll give you some tips that may help your future. The first is, keep an idea notebook. It could be a physical book you keep in your pocket or it could be a directory of files on your phone or computer, doesn’t matter. What does matter is that you record all your ideas as they occur to you so you don’t forget one that might become important later on. In science and other fields, ideas are your stock in trade so you want to preserve your inventory. That absolute‑zero doc is a good start.

Second tip is, after you’ve written down an idea, take a long look at it and ask yourself, “How could I disprove this?” and write that down, too. The essence of science is that it relies more on disproving things than proving them. Get into the habit of thinking about disproof — it’s a powerful way of filtering out incorrect thinking. Works better in some areas than others but in general there’s forward progress.

The reason I highlighted “after” up there is that the first thought, even if it’s wrong, often leads to second and third thoughts that are better. If you discard ideas too quickly you limit yourself. Think of it as an ongoing one‑person brainstorming session. So write first, maybe cross off later, OK?

Third tip is, read up on what your idea is about. A lot. Every field of study has its own “language,” a set of words and concepts that people in the field generally understand. You need to have some command of those if you’re going to ask them clear questions about your idea.

That’s for two reasons. The most important is that using the correct terminology speeds up communication — neither you nor they will have to stop and explain a term or concept. But in addition, if you use the words and concepts properly that tells your conversation partner that you respect their time enough to have done your initial reading.

Fourth tip is where to look for that initial reading. Most textbooks, even shiny freshly-printed ones, are decades behind the current research frontiers. You need to go deeper. You’ll Google your topic, of course, to find popular science articles. Here’s another path to more recent work. Start at a good Wikipedia article. Follow the links to its key recent footnotes and Google the names of the paper’s authors. Many of them will have blogs that they write for a student audience. Follow those blogs.

Looking forward to reading those two files.

Regards,
Sy Moire.

~~ Rich Olcott

Too Many Schrödingers

Cathleen takes back control of the conference software. “Thanks, Jim. OK, the final contestant in our online Crazy Theories contest is the winner of our last face-to-face event where she told us why Spock and horseshoe crabs both have green blood. You’re up, Amanda.”

“Thanks, and hello out there. I can’t believe Jim and I are both talking about parallel universes. It’s almost like we’re thinking in parallel, right?”

<Jim’s mic is muted so he makes gagging motions>

“We need some prep work before I can talk about the Multiverse. I’m gonna start with this heat map of North America at a particular time. Hot in the Texas panhandle, cool in British Columbia, no surprise. You can do a lot with a heat map — pick a latitude and longitude, it tells you the relative temperature. Do some arithmetic on the all numbers and you can get average temperature, highs and lows, front strength in degrees per mile, lots of stuff like that.

“You build this kind of map by doing a lot of individual measurements. If you’re lucky you can summarize those measurements with a function, a compact mathematical expression that does the same job — pick a latitude and longitude, it tells you the value. Three nice things about functions — they take up a lot less space than a map, you can use straightforward mathematical operations on them so getting statistics is less work than with a map, and you can form superpositions by adding functions together.”

Cathleen interrupts. “Amanda, there’s a question in the chat box. ‘Can you give an example of superposition?’

“Sure. You can superpose simple sine‑wave functions to describe chords for sound waves or blended colors for light waves, for instance.

“Now when we get to really small‑scale thingies, we need quantum calculations. The question is, what do quantum calculations tell us? That’s been argued about for a hundred years because the values they generate are iffy superpositions. Twenty percent of this, eighty percent of that. Everybody’s heard of that poor cat in Schrödinger’s box.

“Many researchers say the quantum values are relative probabilities for observing different results in an experiment — but most of them carefully avoid worrying about why the answers aren’t always the same. Einstein wanted to know what Bohr was averaging over to get his averages. Bohr said it doesn’t matter, the percentages are the only things we can know about the system and it’s useless to speculate further.

“Hugh Everett thought bigger. He suggested that the correct quantum function for an observation should include experiment and experimenter. He took that a step further by showing that a proper quantum function would need to include anyone watching the experimenter and so on. In fact, he proposed, maybe there’s just one quantum function for the entire Universe. That would have some interesting implications.

“Remember Schrödinger’s catbox with two possible experimental results? Everett would say that his universal quantum function contains a superposition of two component sub-functions — happy Schrödinger with a live kitty and sad Schrödinger with a disposal problem. Each Schrödinger would be quite certain that he’d seen the definite result of a purely random operation. Two Schrödingers in parallel universes going forward.

“But in fact there’d be way more than two. When Schrödinger’s eye absorbs a photon, or maybe doesn’t, that generates another pair of universes. So do the quantum events that occur as his nerve cells fire, or don’t. Each Schrödinger moves into the future embedded in a dense bundle of parallel universes.”

Cathleen interrupts. “Another question. ‘What about conservation of mass?‘”

“Good question, whoever asked that. Everett doesn’t address that explicitly in his thesis, but I think he assumed the usual superposition math. That always includes a fix‑up step so that the sum of all the pieces adds up to unity. Half a Schrödinger mass on one track and half on the other. Even as each of them splits again and again and again the total is still only one Schrödinger‑mass. There’s other interpretation — each Schrödinger’s universe would be independent of the others so there’s no summing‑up to generate a conservation‑of‑mass problem. Your choice.

“Everett traded quantum weirdness for a weird Universe. Not much of a trade-off, I think.”

~~ Rich Olcott

Worlds Enough And Time Reversed

Cathleen unmutes her mic. “Thanks, Kareem. Our next Crazy Theory presentation is from one of my Cosmology students, Jim.”

“Thanks, Cathleen. Y’all have probably heard about how Relativity Theory and Quantum Mechanics don’t play well together. Unfortunately, people have mixed the two of them together with Cosmology to spawn lots of Crazy Theories about parallel universes. I’m going to give you a quick look at a couple of them. Fasten your seat belt, you’ll need it.

“The first theory depends on the idea that the Universe is infinitely large and we can only see part of it. Everything we can see — stars, galaxies, the Cosmic Microwave Background — they all live in this sphere that’s 93 billion lightyears across. We call it our Observable Universe. Are there stars and galaxies beyond the sphere? Almost certainly, but their light hasn’t been in flight long enough to reach us. By the same token, light from the Milky Way hasn’t traveled far enough to reach anyone outside our sphere.

“Now suppose there’s an alien astronomer circling a star that’s 93 billion lightyears away from us. It’s in the middle of its observable universe just like we’re in the middle of ours. And maybe there’s another observable universe 93 billion lightyears beyond that, and so on to infinity. Oh, by the way, it’s the same in every direction so there could be an infinite number of locally-observable universes. They’re all in the same space, the same laws of physics rule everywhere, it’s just that they’re too far apart to see each other.

“The next step is a leap. With an infinite number of observable universes all following the same physical laws, probability says that each observable universe has to have twins virtually identical to it except for location. There could be many other people exactly like you, out there billions of lightyears away in various directions, sitting in front of their screens or jogging or whatever. Anything you might do, somewhere out there there’s at least one of you doing that. Or maybe a mirror image of you. Lots of yous in lots of parallel observable universes.”

“I don’t like that theory, on two grounds. First, there’s no way to test it so it’s not science. Second, I think it plays fast and loose with the notion of infinity. There’s a big difference between ‘the Universe is large beyond anything we can measure‘ and ‘the Universe is infinite‘. If you’ve been reading Sy Moire’s stuff you’ve probably seen his axiom that if your theory contains an infinity, you’ve left out physics that would stop that. Right, Cathleen?”

Cathleen unmutes her mic. “That quote’s good, Jim.”

“Thanks, so’s the axiom. So that’s one parallel universe theory. OK, here’s another one and it doesn’t depend on infinities. The pop‑science press blared excitement about time‑reversal evidence from the ANITA experiment in Antarctica. Unfortunately, the evidence isn’t anywhere as exciting as the reporting has been.

“The story starts with neutrinos, those nearly massless particles that are emitted during many sub‑atomic reactions. ANITA is one kind of neutrino detector. It’s an array of radio receivers dangling from a helium‑filled balloon 23 miles up. The receivers are designed to pick up the radio waves created when a high‑energy neutrino interacts with glacier ice, which doesn’t happen often. Most of the neutrinos come in from outer space and tell us about solar and stellar activity. However, ANITA detected two events, so‑called ‘anomalies,’ that the scientists can’t yet explain and that’s where things went nuts.

“Almost as soon as the ANITA team sent out word of the anomalies, over three dozen papers were published with hypotheses to account for them. One paper said maybe the anomalies could be interpreted as a clue to one of Cosmology’s long‑standing questions — why aren’t there as many antiprotons as protons? A whole gang of hypotheses suggest ways that maybe something in the Big Bang directed protons into our Universe and antiprotons into a mirror universe just like ours except charges and spacetime are inverted with time running backwards. There’s a tall stack of maybes in there but the New York Post and its pop‑sci allies went straight for the Bizarro parallel universe conclusion. Me, I’m waiting for more data.”

~~ Rich Olcott

Smart Dinosaurs?

<chirp, chirp> “Moire here, what can I do for you while staying six feet away?”

“Hi, Sy, this is Cathleen. you’re invited to to an experiment.”

“What sort of experiment?”

“You’ve been to a few of our ‘Crazy Theory’ events. We can’t do those now, of course, but we’re trying it online. Interested?”

“Sounds like fun. Email me the details and I’ll dial in.”


“Hi, everyone, welcome to our first-ever online ‘Crazy Theories’ seminar. I’m afraid it’ll be a bit different from our traditional affairs. Everyone but the presenter’s on mute so don’t bother shouting encouragement or booing. Any spitballs or wadded-up paper napkins you throw you get to clean up. As always at the end we’ll take a vote to award the Ceremonial Broom for the craziest theory. Type your questions and comments in the chat box; we’ll get to them after the presenter finishes. Everybody got all that? OK, our first presenter is from my Planetology class. Go ahead, Kareem.”

“Hey, everybody. I’m Kareem and my Crazy Theory isn’t mine, personally, but it’s the one that got me into Planetology class. Its was in this science fiction novel I read a couple of years ago. The story’s complicated and has a lot of science that I didn’t understand, but the part that caught my imagination was his idea that what killed off the dinosaurs was smart dinosaurs.”

<consults notes>

“A little history first. In the late 1970s two scientists named Alvarez discovered that all around the Earth there’s a thin layer of soil with more than ten times the normal amount of an element called iridium. They found that the layer was 66 million years old, which just matched the end of the Cretaceous Era when the last of the dinosaurs died off. They knew that some meteorites have a lot of iridium so in 1980 they suggested that a meteor strike must have done the deed.

“That idea was so controversial that John McLoughlin came up with his own explanation and based his book on it. He supposed that about 66 million years ago evolution produced intelligent dinosaurs that took over the planet the way that we humans have in our time. They weren’t huge like T‑rex but they were big enough to use Triceratops as draft and meat animals and smart enough to develop lots of iridium‑based technology like we use copper. Anyway, they got into a world war and that was what wiped everything out and left behind the traces of iridium.”

<gulps down soda>

“McLaughlin’s book came out in 1988. Since than we’ve learned that the Alvarez guys were basically right although there was some other stuff going on, too. But the book got me thinking that maybe there could have been a world‑wide civilization and the only things left after 66 million years were bones and this trace of a metal they used. Humans have only been around for like a hundred thousand years and we’ve only been doing metals big‑time for a few hundred which is teeny compared to a million years. A paleontologist wouldn’t even be able to detect a time period that small. So my Crazy Theory is, maybe there were smart dinosaurs or something and we just haven’t found evidence for them.”

<burp>

“Ever since then I’ve kept an eye out for publications about what a vanished civilization might leave behind for us to discover. In this book Weisman lays out survival times for our civilization’s stuff — plastic, houses, roads and so on. Pretty much everything but Mount Rushmore and the Chunnel will have dissolved or eroded away much sooner than a million years. Really readable if you want more details.”

<more soda>

“I also found a paper, ‘The Silurian Hypothesis,’ that took a more technical approach. Their big library research project pulled results from scores of geologic isotope analysis and fossil survey reports looking for ancient times that resemble Earth’s sudden change since the start of the Industrial Age — climate, species declines, whatever. They found about a dozen, but as they said, ‘the known unique markers might not be indicative, while the (perhaps) more expected markers are not sufficient.’ In other words, my Crazy Theory might be crazy. Or maybe not.”

~~ Rich Olcott

Unless We’re All In This, Together

I wrote the italicized text for another forum, but I’m reposting it here because my head and heart and the times demand it…


We’ll soon be in the month of our national Independence Day so it’s appropriate to point out that we’re living in an Age of Heroes.  We’ve had heroes all along, of course — the Founding Fathers and Mothers, the military who defend the country we’ve built, the first responders who run toward danger to protect the rest of us. 

Less lauded but still crucial is another group of heroes – parents, teachers, caregivers and others who take on responsibility for nurturing and supporting people who for whatever reason can’t handle the challenge themselves.  These heroes may not risk bodily damage but the emotional toll can be devastating.  It says something positive for our society that we have so many in this group.

But in the past few months we’ve come to recognize yet another category of heroism.  From maintenance and transportation staff to the entire farm‑to‑table supply chain workforce, these people have quietly continued their tasks in the face of COVID‑19, with or without protective measures in place.  Without their brave efforts our cities and economy would have been weakened far more than they have been. 

Those three categories together comprise a significant fraction of our population.  In my opinion, there’s a lesson there that our country has been too slow to learn.  Humans got where we are because we’re a societal species.  The Western Frontier closed a century ago.  Even the legendarily reclusive “mountain men” had to come into town occasionally for medical care or supplies they just couldn’t produce on their own.  In the past few months, our distress with social distancing and our burgeoning activity on social media highlight just how much we want/need to interact with other people.

Like it or not, we are all part of society.  Moreover, the smooth functioning of our society depends on our collaboration.  I’m not arguing an absolutist position here – cooperation leaves plenty of room for competition and individual liberty (how best to organize the economy is a separate discussion).  But I do think we need official and explicit recognition of the fact that what I do affects you and what you do affects me.

Here’s my modest proposal – let’s rename the Fourth of July as National Interdependence Day.


Part of being societal, of course, is the impulse to protect those about us. That’s why many of those on the Thin Blue Line got into the force and I’m grateful and more than a little awed. But as we’ve seen, some of them don’t live up to what’s expected of them.

“There’s some bad apples in every barrel,” has been said too often. The question is, why are they still there? The line officers know better than anyone else the characters of their peers. Can’t they get rid of the bad apples themselves?

The most common defense I’ve heard from my LEO friends has been along the lines of, “Out there we can only survive if we know we have each other’s backs. If I write up a complaint and if the higher-ups don’t desk or boot the guy, he’ll look the other way the next time something goes down when we’re on the street together.” That culture must change, for the sake of the good cops and the rest of us.

There are some indications that the no-snitch attitude may be changing as the unions and PD administrators and prosecutors realize that bad cops directly contribute to the deadly conditions the rest have to work under. I sure hope so.

In closing, I highly recommend this thought piece from Trevor Noah, who is far more than a comedian. Please do listen through to the end. Then think about it. Then do something.

~~ Rich Olcott

Joke Time

<Note to reader — Doing a little Spring cleaning. Here’s a collection of short takes to lighten your mood in these trying times…>


Dark Matter and Dark Energy walked into a bar. No-one noticed.


A baffled young student of Chemistry
Got their enthalpy mixed with their entropy.
         ”Thy’re surely confusing me
         And evilly abusing me
With their Gibbs and their Helmholz free energy.”


Elliptical definitions are even less informative than circular definitions. That’s why politicians prefer them.


There’s an old and well-established (but good-natured) rivalry between major segments of humanity’s Science enterprise. A Mathematician might proclaim that

  • Mathematics is the Queen of the Sciences.
  • Physics is noisy Mathematics.
  • Chemistry is smelly Physics.
  • Biology is squishy Chemistry.
  • Psychology is congealed Biology.
  • Sociology is imprecise Psychology.
  • Archaeology is dusty Sociology.
  • Paleontology is unfocused Archaeology.
  • Geology is Paleontology that you’ve stubbed your toe on.

whereas Chemists would point to the typical number of objects in a study

  • Chemistry — 6×1023
  • Cell biology — 106 to 109
  • Astronomy — between 8 and a trillion, depending on specialty
  • Whole-body Biology — dozens to hundreds
  • Physics has trouble when there are more than 3
  • Cosmology — one.

Statistics are what we used before we had computer graphics.


Paleontologists have announced the discovery of a previously unknown fossil homid, Homo eructus, also known as “Spitting Man.” The body had been interred along with a copious supply of status goods — shell and polished-stone necklaces, a blade weapon, etc., but also unexpectedly numerous containers of chewing tobacco and a tin cup, hence the species name.


I’d like to thank whoever thought up this call-and-response…
     WHAT DO WE WANT?
         TIME TRAVEL!
     WHEN DO WE WANT IT?
         IT DOESN’T MATTER!


One friend says that coconuts are mammals because they have fur and give milk. Another friend maintains that they’re shellfish. She writes, “Wikipedia says shellfish are ‘exoskeleton-bearing aquatic invertebrates used as food‘. Their husk is the exoskeleton, they’re obviously invertebrates because they have no spine, and they’re aquatic when floating in water or blended into cocktails.”


If the human body is the result of Intelligent Design, how come it’s impossible to reach that itchy spot in the middle of one’s back?


Combining my physics studies and my observations as a museum docent I’ve concluded that there are three ultimate speeds in the Universe
 * the speed of sound
 * the speed of light
 * the speed of a toddler when your back is turned.


The letter “A” is common in English, but you can count from zero to nine-hundred ninety-nine without encountering an “A“. On the other hand, the letter “Z” is uncommon but in Zero it’s at the head of the number line. If you want to cover something from A to Z, you have to count backwards.


Speaking of “Z,” “zero” is the only formal number word that contains a “z.” “Zillion” and “bazillion” don’t count.


I had a really good walk-off line, but that was at 3:00 am and it’s gone.
Dang, I hate it when that happens.
Don’t forget to tip the wait staff.

~~ Rich Olcott