‘Twixt A Rock And A Vortex

A chilly late December walk in the park and there’s Vinnie on a lakeside bench, staring at the geese and looking morose. “Hi, Vinnie, why so down on such a bright day?”

“Hi, Sy. I guess you ain’t heard. Frankie’s got the ‘rona.”

Frankie??!? The guys got the constitution of an ox. I don’t think he’s ever been sick in his life.”

“Probably not. Remember when that bug going around last January had everyone coughing for a week? Passed him right by. This time’s different. Three days after he showed a fever, bang, he’s in the hospital.”

“Wow. How’s Emma?”

“She had it first — a week of headaches and coughing. She’s OK now but worried sick. Hospital won’t let her in to see him, of course, which is a good thing I suppose so she can stay home with the kids and their schoolwork.”

“Bummer. We knew it was coming but…”

“Yeah. Makes a difference when it’s someone you know. Hey, do me a favor — throw some science at me, get my mind off this for a while.”

“That’s a big assignment, considering. Let’s see … patient, pandemic … Ah! E pluribus unum and back again.”

“Come again?”

“One of the gaps that stand between Physics and being an exact science.”

“I thought Physics was exact.”

“Good to fifteen decimal places in a few special experiments, but hardly exact. There’s many a slip ‘twixt theory and practice. One of the slips is the gap between kinematic physics, about how separate objects interact, and continuum physics, where you’re looking at one big thing.”

“This is sounding like that Loschmidt guy again.”

“It’s related but bigger. Newton worked on both sides of this one. On the kinematics side there’s billiard balls and planets and such. Assuming no frictional energy loss, Newton’s Three Laws and his Law of Gravity let us calculate exact predictions for their future trajectories … unless you’ve got more than three objects in play. It’s mathematically impossible to write exact predictions for four or more objects unless they start in one of a few special configurations. Newton didn’t do atoms, no surprise, but his work led to Schrödinger’s equation for an exact description of single electron, single nucleus systems. Anything more complicated, all we can do is approximate.”

“Computers. They do a lot with computers.”

“True, but that’s still approximating. Time‑step by time‑step and you never know what might sneak in or out between steps.”

“What’s ‘continuum‘ about then? Q on Star trek?”

“Hardly, we’re talking predictability here. Q’s thing is unpredictability. A physics continuum is a solid or fluid with no relevant internal structure, just an unbroken mass from one edge to the other. Newton showed how to analyze a continuum’s smooth churning by considering the forces that act on an imaginary isolated packet of stuff at various points in there. He basically invented the idea of viscosity as a way to account for friction between a fluid and the walls of the pipe it’s flowing through.”

“Smooth churning, eh? I see a problem.”

“What’s that?”

“The eddies and whirlpools I see when I row — not smooth.”

“Good point. In fact, that’s the point I was getting to. We can use extensions of Newton’s technique to handle a single well‑behaved whirlpool, but in real life big whirlpools throw off smaller ones and they spawn eddies and mini‑vortices and so on, all the way down to atom level. That turns out to be another intractable calculation, just as impossible as the many‑body particle mechanics problem.”

“Ah‑hah! That’s the gap! Newton just did the simple stuff at both ends, stayed away from the middle where things get complicated.”

“Exactly. To his credit, though, he pointed the way for the rest of us.”

“So how can you handle the middle?”

“The same thing that quantum mechanics does — use statistics. That’s if the math expressions are average‑able which sometimes they’re not, and if statistical numbers are good enough for why you’re doing the calculation. Not good enough for weather prediction, for instance — climate is about averages but weather needs specifics.”

“Yeah, like it’s just started to snow which I wasn’t expecting. I’m heading home. See ya, Sy.”

“See ya, Vinnie. … Frankie. … Geez.

~~ Rich Olcott

❄❅❆Snowflakes ❆❅❄

<chirp, chirp> “Moire here.”

“Uncle Sy! Uncle Sy! It’s snowing again!”

“Yes, Teena, I noticed. I’ll be over to help you build a snowman in a little while.”

“Yay! There’s so much snow coming down. I bet there’s a kazillion snowflakes!”

“Maybe even more. And no two of them are exactly alike.”

“Yeah, that’s what Mommy said. I went outside a while ago and caught a bunch on my coat sleeve like you showed me. All different shapes — stars and pencils and almost-round ones and spiky balls. I can’t remember them all. How do we know that they never match? Did someone look at them with a computer camera?”

“Whoa, that’s too big a job for even a really fast computer with a really good camera. No, it goes back to how snowflakes grow up.”

“Ha-ha, that’s funny! Little baby snowflake grows up to be a big Mommy snowflake!”

“Well, in a way that’s what happens. You know clouds are really made of teeny water droplets, right?”

“Yeah, Mommy says it’s a fog, but way up in the air. But the fluffy ones are pretty.”

“Yes they are, but inside some of the not-fluffy clouds it can be very cold and windy.”

“Danger cold?”

“Very danger cold. Cold enough for some of those teeny droplets to freeze and become ice droplets. When an ice droplet touches a water droplet they merge to make a bigger piece of ice. The winds blow the ice up and down between wet places and cold places inside the cloud over and over again. The piece of ice grows and grows until it gets so heavy it falls down out of the cloud.”

“Like a roller coaster! But wouldn’t that just make round ice? That’s not what I caught on my sleeve.”

“Sometimes it does. Remember that hail storm we had last year?”

“Oooo. Yeah, we got inside just in time. Those hailstones went pitter‑patter all over the sidewalk and the windows.”

“Just be very glad they were only pinkie‑nail‑sized. I was in a storm once where the hail was as bigger than your shooter marble. It made dents on my car.”

“WOW! That would hurt!”

“It certainly would. I hope you’re never in one of those ice storms, just stars‑and‑pencils snow like you saw on your sleeve. Stars‑and‑pencils happens when the winds inside the cloud are gentler and give the teeny ice droplets time to grow a different way.”

“Different how?”

“Want to do an experiment?”

“Over the phone?”

“Sure. Get your bag of marbles and a lid from one of your board game boxes. Say when you’re ready.”

“OK … ready!”

“OK, Put the lid on the floor face‑down but prop it up so one corner is lower than the other three.”

“Umm … ready!”

“Now slowly pour your marbles into the lid so they lie together in one layer. Slowly, we don’t want them going all over the floor.”

“That’d make Mommy mad. Ooo, pretty! They make a honeycomb pattern. I see a lot of hexa–, um…”

“Hexagons. Good girl, you did that just right. That pattern is a lot like how water molecules arrange themselves when they freeze. When a new molecule walks up to some ice, it tries to touch as many other molecules as it can. That automatically makes hexagons.”

“Oh! Teeny hexagons grow up to be snow hexagons! Ha-ha!!”

“Mm-hm, and depending on conditions some rows grow fast to make flat plate snowflakes or a different set of rows might grow quickly to make frilly stars.”

“But why don’t they all grow the same?”

“Because of how messy it is inside that cloud. Winds blowing up and down and sideways, wet places and not‑so‑wet places scattered all over everywhere. Two baby snowflakes starting right next to each other can wind up on opposite sides of the cloud with entirely different stories to tell.”

“But then how can different sides of the same snowflake be the same?”

“They’re on the same flake so they’re always close together as the flake grows. They don’t get a chance for different stories. OK, I just finished up. It’s snowman time.”

“Yay!”

Nope, ain’t gonna happen. Not with water, not with anything else.

~~ Rich Olcott

Conjunction Function

Author’s note — This was supposed to have been posted on 13 December, a week before the conjunction, but then Arecibo happened. That topic took precedence and two parts. Please pretend you’re reading this before 21 December.

hi, Sy. taking orders for tonite’s delivery. u want pizza? calzone?

Hi, Eddie. How about a veggie stromboli?

sure, no problem. @ your office about 6:45, OK?

That’ll be good. See you then.

btw, question for you about the jupiter-saturn thing coming up

The conjunction? Sure. We can talk when you get here.

<bah-dap-dap> “C’mon in, Eddie, the door’s open.”

“Hiya, Sy. Here’s your stromboli. Sorry I’m a little late. I figured we’d be talking so I took care of my other customers first. I wrapped it real good, is it still hot enough?”

<tasting pause> “Perfect, Eddie. So what’s your question?”

“OK, I been reading on the internet about how Jupiter and Saturn are gonna collide on December 21 and we’re all gonna die so don’t bother about Christmas. But I also read that this happened before like 800 years ago and we’re still here so the ‘all gonna die‘ part don’t sound right.”

“Good thinking. We’re not going to die, they’re not going to collide, and Great Conjunctions happen way more often than every 800 years. You said you’d be asking about that so I built a couple of diagrams using planet positions I pulled from NASA’s slick Eyes on The Solar System app. OK, let’s start with this south‑facing view of the system as it was a year ago.”

Planetary positions, 15 Dec 2019

“Pretty, kinda, but what’s it mean?”

“That orange dot in the center is the Sun. The circles are planet orbits, and the colored dots show the position of each planet. All the planets and most of their moons go counterclockwise when viewed from Solar north — that’s what the little arrows show.”

“I thought Jupiter was way bigger than Earth.”

“It is. There’s no way you can get planet distances and planet sizes to scale in the same diagram. Distances are too big and even Jupiter’s too small. These distances are about right, but all the dots are just markers.”

“Funny, Sy — you dropped Jupiter half-way between Earth and Saturn.”

“That’s where it is. The distance between each pair of orbits is almost exactly 4½ times the distance between Earth and the Sun. Of course, the distance between the planets themselves depends on where each one is in its orbit and that changes all the time. Earth flies along its path three times faster than Saturn goes. Last December, Earth was 186 million miles further away from Saturn than it was in July.”

“Those dotted lines are sight-lines? That picture says that last December we had a clear view of Saturn but Earth and Jupiter were playing peek-a-boo around the Sun.”

“Exactly, and what a great lead‑in to my second diagram, calculated for next Monday.”

Planetary positions, 21 Dec 2020

“The two sight-lines overlap. They’ll look like just one planet, sorta. So that’s what all the fuss is about? They’re still that huge distance away from each other, not close to us at all.”

“Overlap’s a good word, though the official term is conjunction. The only things close together are images as seen from Earth. That last qualifier is important. What you see depends on where you stand. Our Curiosity rover on Mars won’t see a Great Conjunction like this for another month, on 31 Jan 2021.”

“What makes it a Great Conjunction? Is it brighter or something?”

“In a way. In principle you can have a conjunction of any two visible astronomical bodies. The phrase Great Conjunction only applies to Jupiter‑Saturn events. Of the classical planets Jupiter and Saturn are the slowest‑moving so their conjunction happens least often. They’re also the biggest and reflect more sunlight than Mercury or Mars so, yeah, their conjunctions tend to be especially bright.”

“But you said it happens a lot.”

“About every 20 years. You’re thinking about that 800‑year‑old event. That was the last time the two images were so close, less than a tenth of a degree apart.”

“So anyhow, we’re not all gonna die. Guess I’ll go Christmas shopping after all.”

“You do that, but shop local, OK?”

“That’s my motto now.”

~~ Rich Olcott

Earth’s Closed Eye

Question in the chat box, Maria, and I paraphrase to preserve anonymity — ‘So the Arecibo telescope won’t work any more. Why should we care? There’s lots of other telescopes that could so the same job.‘”

“But profesora, there aren’t. Arecibo is special in many ways. First, it is a very good telescope. That means it has high sensitivity and high resolution. Compare two radio telescopes with different‑size dishes and the same kinds of antennas and everything else. The one with the bigger dish is more sensitive because it can capture more photons. Arecibo’s 300‑meter dish used to be the largest in the world. China activated their FAST instrument five years ago. Its 500‑meter dish should make it more than 200 times as sensitive as Arecibo, but it doesn’t because neither telescope is designed to use the entire dish surface at once except for looking straight up. Their active areas are about the same.”

Is FAST another one of those goofy acronyms?

“Of course. It stands for ‘Five‑hundred‑meter Aperture Spherical radio Telescope‘ but in Chinese its name is Tianyan, which means ‘Heaven Eye.’ I think that is more pretty. FAST and Arecibo overlap their wavelength ranges, although FAST can receive some longer wavelengths and Arecibo can receive some shorter ones. Oh, there is also a big Russian radio telescope, RATAN‑600, with an even bigger diameter. But it is a ring, not a disk, so not as sensitive as Arecibo or FAST.”

A ring? Why did they build it that way?

“Because of the other thing you need in a good telescope, resolution. If you have good resolution in an image, you can see points that are very close together. The how‑close limit angle comes from dividing the light wavelength by the dish diameter. The diameter of RATAN’s ring is 600 meters, so RATAN’s resolving power is twice as good as Arecibo’s 300‑meter disk. RATAN doesn’t need to be sensitive, though, because it is used mostly for looking close at the Sun, not at stars and galaxies. That is OK because RATAN is so far north.”

What difference does that make?

“No telescope can see what is below its horizon. RATAN is at 43° north, almost 1400 miles north of Arecibo. It has a good view of the northern sky but cannot see down to the Equator where many asteroids and all the planets are.”

Sorry, Maria, that’s not quite correct. Earth is tilted relative to the orbital plane by 23° so even Arecibo only sees the northern portion of planetary orbits. While I’ve got the mic I’ll add some background on RATAN‑600. RATAN is the acronym for ‘Academy of Sciences Radio Telescope’ in Russian. It was built in the Cold War era when that part of the world was the USSR. Although I don’t believe it’s ever been publicly confirmed, many people think that RATAN‑600‘s original purpose was detection of ICBMs coming in over the North Pole. However, over the decades it has been a productive source of information for the solar physics community. Back to you, Maria.

“That is good to know, profesora. Thank you. So, Arecibo is — was —special because of its sensitivity and its resolution. It is also about 500 miles further south than FAST. But Arecibo has one additional feature that FAST cannot have — radar. Arecibo has high-powered transmitters that can send out terawatt pulses to things in the Solar System that are closer than Saturn. The dish gathers echoes that give us detailed knowledge of those objects. For instance, Arecibo’s radar echoes from Mercury showed us that the planet is not tidally locked to the Sun. We used to think Mercury’s day was 88 days long, like its year, but now we know it rotates in only 59 days.”

Why can’t the Chinese just add transmitters to FAST?

“The Chinese designers gave FAST a light‑weight antenna carriage to hang over its dish. Arecibo’s 900‑ton carriage can handle massive transmitters, but FAST’s cannot. There is one other radio telescope with radar, at Goldstone, California, but it has less than one‑millionth the power of Arecibo’s transmitters. Without Arecibo’s sensitivity, resolution, location and high-powered radar capability we cannot find near‑Earth asteroids on track to hit us.”

~~ Rich Olcott

Author’s note — Early in the morning of 1 December, after I completed last week’s and this post, the National Science Foundation reported that Arecibo’s central instrument platform has fallen onto the dish as a result of further cable failures.
“Vale, nostri servi boni et fidelis”
Farewell, our good and faithful servant.

Arecibo ¡que lástima!

Hello, Astronomy video class. I’ve made room in the syllabus schedule for a quick talk from someone with a personal connection to a timely topic. You may know we’ve lost one of Astronomy’s premier radio telescopes, Puerto Rico’s Arecibo Observatory. I’ve asked Maria to fill us in on the what and the why. If you have a question, type it into your chat window and I’ll relay it to her. Maria, you’re on.”

“Thank you, profesora. Yes, I do know Arecibo because I have worked there. I grew up in Hatillo, a small city on the north coast about half an hour away from the Observatory. My teacher of science in high school, somehow he got me a summer job there. Sometimes I worked in the gift shop, sometimes I helped the guided tours, but my best thing was running errands because then I could visit the science offices and chat with people about what they were doing. There I fell in love with Astronomy and that is why I came here to study.

“When people think of Arecibo they think of the big 300 meter dish, about 1000 feet across. Sharing my screen for you… there. This picture I got from Wikipedia:

The Arecibo Observatory
photo by JidoBG, licensed under the Creative Commons Attribution-Share Alike 4.0 International

“The installation sits in very rough mountains. They are so rough because they are mostly limestone that slowly dissolves in water. The water seeps in through cracks to attack the rock and make cliffs and holes and caves. The Arecibo observatory is where it is because water eroded a cavern close to the surface. The topmost material fell into the empty space to make a huge round sinkhole like very few other places in the world.”

Question from the chat, Maria. Did the rock actually dissolve into that convenient smooth reflector shape?

“¡Por Dios no! The circular shape, yes, but the sinkhole floor is nearly flat. The dish itself is many aluminum panels fixed to a floating steel grid. Here is a picture Mr Phil Perillat took from beneath the dish. I don’t know Mr Perillat’s title but he is always very busy keeping things running.

“Above you see the grid, five meters or more above the ground. The grid is supported by concrete all around the edges. Coming down from the grid you see cables leading to those round concrete piers. These cables pull the grid down into its curved shape which is actually a piece of a sphere.”

A sphere, not a parabola?

“No, profesora, and that is important. A fixed dish with a parabola shape like most telescope mirrors always would aim straight up. It would see targets at the top of the sky but for only a few minutes as the Earth turns through the day. With a sphere‑shaped dish and the antennas mounted where the center of the sphere would be, then the whole sky is in focus. The scientists aim the telescope by moving the antennas to point at different parts of the dish like you look at different parts of one of those funny mirrors in, sorry I don’t know the word, una casa de la diversión.”

A funhouse.”

“Thank you. The antenna carriage is so complicated because it must look at different parts of the dish. Here you see the carriage:

The Arecibo receiver mounting and dome
Photo by Phil Perillat, National Astronomy and Ionosphere Center

“The antennas point downward from inside that dome. When motors swing the dome along that crescent‑shaped arc, the antennas scan along an arc of the dish. More motors can rotate the arc around that circular track. By swinging and rotating together, the antennas can follow the reflection of any object that moves through the sky.”

All those motors and tracks and antennas must be heavy.”

“Yes, 900 tons hanging 500 feet above the grid. Eighteen cables hold it up. Each is many strands of steel braided together. Compressed air blows through the braids to prevent corrosion, but the storms won out in the end. Three cables have failed and it is too dangerous for repair. So sad.”

~~ Rich Olcott

Author’s note — Early in the morning of 1 December, after I completed this and next week’s posts, the National Science Foundation reported that Arecibo’s central instrument platform had fallen onto the dish as a result of further cable failures.
“Vale, nostri servi boni et fidelis”
Farewell, our good and faithful servant.

Only a H2 in A Gilded Cage

“OK, Susan, you’ve led us through doing high-pressure experiments with the Diamond Anvil Cell and you’ve talked about superconductivity and supermagnetism. How do they play together?”

“It’s early days yet, Sy, but Dias and a couple of other research groups may have brought us a new kind of superconductivity.”

“Another? You talked like there’s only one.”

“It’s one of those ‘depends on how you look at it‘ things, Al. We’ve got ‘conventional‘ superconductors and then there are the others. The conventional ones — elements like mercury or lead, alloys like vanadium‑silicon — are the model we’ve had for a century. Their critical temperatures are generally below 30 kelvins, really cold. We have a 60‑year‑old Nobel‑winning theory called ‘BCS‘ that’s so good it essentially defines conventional superconductivity. BCS theory is based on quantum‑entangled valence electrons.”

“So I guess the unconventional ones aren’t like that, huh?”

“Actually, there seem to be several groups of unconventionals, none of which quite fit the BCS theory. Most of the groups have critical temperatures way above what BCS says should be the upper limit. There are iron‑based and heavy‑metals‑based groups that use non‑valence electrons. There are a couple of different carbon‑based preparations that are just mystical. There’s a crazy collection of copper oxide ceramics that can contain five or more elements. Researchers have come up with theories for each of them, but the theories aren’t predictive — they don’t give dependable optimization guidelines.”

“Then how do they know how to make one of these?”

“Old motto — ‘Intuition guided by experience.’ There are so many variables in these complex systems — add how much of each ingredient, cook for how long at what temperature and pressure, chill the mix quickly or anneal it slowly, bathe it in an electrical or magnetic field and if so, how strong and at what point in the process… Other chemists refer to the whole enterprise as witch’s‑brew chemistry. But the researchers do find the occasional acorn in the grass.”

“I guess the high‑pressure ploy is just another variable then?”

“It’s a little less random than that, Sy. If you make two samples of a conventional superconductor, using different isotopes of the same element, the sample with the lighter isotope has the higher critical temperature. That’s part of the evidence for BCS theory, which says that electrons get entangled when they interact with vibrations in a superconductor. At a given temperature light atoms vibrate at higher frequency than heavy ones so there’s more opportunity for entanglement to get started . That set some researchers thinking, ‘We’d get the highest‑frequency vibrations from the lightest atom, hydrogen. Let’s pack hydrogens to high density and see what happens.'”

“Sounds like a great idea, Susan.”

“Indeed, Al, but not an easy one to achieve. Solid metallic hydrogen should be the perfect case. Dias and his group reported on a sample of metallic hydrogen a couple of years ago but they couldn’t tell if it was solid or liquid. This was at 5 megabars pressure and their diamonds broke before they could finish working up the sample. Recent work has aimed at using other elements to produce a ‘hydrogen‑rich’ environment. When Dias tested H2S at 1.5 megabar pressure, they found superconductivity at 203 kelvins. Knocked everyone’s socks off.”

“Gold rush! Just squeeze and chill every hydrogen‑rich compound you can get hold of.”

“It’s a little more complicated than that, Sy. Extreme pressures can force weird chemistry. Dias reported that shining a green laser on a pressurized mix of hydrogen gas with powdered sulfur and carbon gave them a clear crystalline material whose critical temperature was 287 kelvins. Wow! A winner, for sure, but who knows what the stuff is? Another example — the H2S that Dias loaded into the DAC became H3S under pressure.”

“Wait, three hydrogens per sulfur? But the valency rules—”

“I know, Sy, the rules say two per sulfur. Under pressure, though, you get one unattached molecule of H2 crammed into the space inside a cage of H2S molecules. It’s called a clathrate or guest‑host structure. The final formula is H2(H2S)2 or H3S. Weird, huh? Really loads in the hydrogen, though.”

“Jupiter has a humungous magnetic field and deep‑down it’s got high‑density hydrogen, probably metallic. Hmmm….”

~~ Rich Olcott

Futile? Nope, Just Zero

“Megabar superconductivity.”

“Whoa, Susan. Too much information, too few words. Could you unpack that, please?”

“No problem, Sy. A bar is the barometric pressure (get it?) at sea level. A megabar is—”

“A million atmospheres, right?”

“Right, Al. So Ranga Dias and his crew were using their Diamond Anvil Cells to put their chemical samples under million-atmosphere pressures while they tested for superconductivity—”

“Like Superman uses?”

“Is he always like this, Sy?”

“Just when he gets excited, Susan. The guy loves Science, what can I say?”

“Sorry, Susan. So what makes conductivity into superconductivity?”

“Excellent question, Al. Answering it generated several Nobel Prizes and we still don’t have a complete explanation. I can tell you the what but I can’t give you a firm why. Mmm… what do you know about electrical resistance?”

“Just what we got in High School General Science. We built a circuit with a battery and a switch and an unknown resistor and a meter to measure the current. We figured the resistance from the voltage divided by the current. Or maybe the other way around.”

“You got it right the first try. The voltage drop across a resistor is the current times the resistance, V=IR so V/I=R. That’s for ordinary materials under ordinary conditions. But early last century researchers found that for many materials, if you get them cold enough the resistance is zero.”

“Zero? But … if you put any voltage across something like that it could swallow an infinite amount of current.”

“Whoa, Al, what’s my motto about infinities?”

“Oh yeah, Sy. ‘If your theory contains an infinity, you’ve left out physics that would stop that.’ So what’d stop an infinite current here?”

“The resistor wasn’t the only element in your experimental circuit. Internal resistance within the battery and meter would limit the current. Those 20th-century researchers had to use some clever techniques to measure what they had. Back to you, Susan.”

“Thanks, Sy. I’m going to remember that motto. Bottom line, Al, superconductors have zero resistance but only under the right conditions. You start with your test material, with a reasonable resistance at some reasonable temperature, and then keep measuring its resistance as you slowly chill it. If it’s willing to superconduct, at some critical temperature you see the resistance abruptly drop straight down to zero. The critical temperature varies with different materials. The weird thing is, once the materials are below their personal critical temperature all superconductors behave the same way. It’s seems to be all about the electrons and they don’t care what kind of atom they rode in on.”

“Wouldn’t copper superconduct better than iron?”

“Oddly enough, pure copper doesn’t superconduct at all. Iron and lead both superconduct and so do some weird copper-containing oxides. Oh, and superconductivity has another funny dependency — it’s blocked by strong magnetic fields, but on the other hand it blocks out weaker ones. Under normal conditions, a magnetic field can penetrate deep into most materials. However, a superconducting piece of material completely repels the field, forces the magnetic lines to go around it. That’s called the Meissner effect and it’s quantum and—”

“How’s it work?”

“Even though we’ve got a good theory for the materials with low critical temperature, the copper oxides and such are still a puzzle. Here’s a diagram I built for one of my classes…”

“The top half is the ordinary situation, like in a copper wire. Most of the current is carried by electrons near the surface, but there’s a lot of random motion there, electrons bouncing off of impurities and crystal defects and boundaries. That’s where ordinary conduction’s resistance comes from. Compare that with the diagram’s bottom half, a seriously simplified view of superconduction. Here the electrons act like soldiers on parade, all quantum‑entangled with each other and moving as one big unit.”

“The green spirals?”

“They represent an imposed magnetic field. See the red bits diving into the ordinary conductor? But the superconducting parade doesn’t make space for the circular motion that magnetism tries to impose. The force lines just bounce off. Fun fact — the supercurrent itself generates a huge magnetic field but only outside the superconductor.”

“How ’bout that? So how is megabar superconductivity different?”

~~ Rich Olcott

Diamonds in The Tough

“Excuse me, they said there’s a coffee shop over here somewhere. Could you please point me to it?”

“Sure. Al’s place is right around the next corner, behind the Physics building. I’ll walk you over there.”

“Oh, I don’t want to bother you.”

“No bother, it’s my coffee time anyway. Hi, Al, new customer for you.”

“Hi, Sy. What’ll it be, Ms … ?”

“I’m Susan, Susan Kim. A mocha latte, please, Al. And you’re Sy …?”

“Moire. Sy Moire, Consulting Physicist. Who’s the ‘they’ that told you about Al’s?”

“An office staffer in the Chemistry Department. I just joined the research faculty over there.”

Al’s ears perk up. “A chemist, at last! For some reason they don’t show up over here very much.”

“Hah, I bet it’s because they’re used to drinking lab coffee from beakers.”

“As a matter of fact, Sy, I do have a coffee beaker. A glass‑worker friend added a very nice handle to a 500‑milliliter beaker for me. It’s not unpacked yet which is why I was looking for a coffee shop. This latte is very good, Al, better than lab coffee any day.”

“Thanks. So what’s the news in Science, guys?”

“Mmm… On Mars, the Insight mission‘s ‘mole’ thermal probe has finally buried itself completely, on its way down we hope to its targeted 5‑meter depth. And the OSIRIS‑REx mission to Asteroid Bennu successfully collected maybe a little too much asteroid sample. One rock fragment blocked the sampler’s lid like a bit of souvenir sticking out of a tourist’s carry‑on bag. Fortunately the engineers figured out how to stow the stuff more neatly for the two‑year trip back home. How about in the Chemistry world, Susan?”

“Hmm… Ranga Dias and his team at the University of Rochester used a diamond anvil cell to—”

“Wait — a diamond anvil? Like the Village Blacksmith but made of diamond?”

“No, Al, nothing like that. Diamond is the hardest substance we know of, right? A DAC uses a pair of quarter‑carat gem‑quality diamonds pushing against each other to create a small volume of crazy high pressure in the space between them, up into the million‑atmosphere range. Here, I’ve got a gorgeous photo of one on my phone…

Diamond anvil cell, photo by J. Adam Fenster / University of Rochester

“To give you an idea of the scale, that square black gasket between the two diamonds is a piece of rhenium metal foil that’s a quarter of a millimeter thick. The reaction vessel itself is a hole they spark-drilled through the gasket. This is teeny, nanoliter chemistry.”

“OK, they’re small diamonds, but .. DIAMONDS! I bet they crack some of them. That’s got to be ex‑PENsive, our tax dollars going CRUNCH!.”

“Not really. You’re right, some do crack, up around the seven million atmosphere mark. But here’s the fun part — the researchers don’t pay market price for those diamonds. They come from the government’s stock of smuggled goods that Customs agents have confiscated at the border.”

“Why go to all that trouble? What’s wrong with test tubes and beakers?”

“Because not all chemistry takes place at atmospheric pressure, Sy. High pressure crams molecules closer together. They get in each other’s way, maybe deform each other enough to react in ways that they wouldn’t under conditions we’d call ‘normal.’ Even water has something like 17 different forms of ice under different pressure‑temperature conditions. The whole discipline of high‑pressure chemistry got started because the seismologists needed to know how minerals transform, melt, flow and react under stress. The thing about diamond is that it doesn’t transform, melt, flow or react.”

“Oo, oo, you can see through a diamond, sorta. I’ll betcha people pipe laser beams down them, right?”

“Absolutely, Al. Before lasers came along researchers were using regular light and optics to track events in a pressurized DAC. Lasers and fiber optics completely changed the game. Not just for observation — you can use intense light to heat things up, get them even closer to deep‑Earth conditions.”

“I suppose chemists are like physicists — once a new tool becomes available everybody dives in to play.”

“You know it. There’s thousands of papers out there detailing work that used a DAC.”

“So what did Dias report on?”

~~ Rich Olcott

Zeroing In on Water

<chirp, chirp> “Moire here.”

“Hi, Sy, it’s me, Vinnie. I just heard this news story about finding water on the Moon. I thought we did that ten years ago. You even wrote about it.”

“The internet never forgets, does it? That post wasn’t quite right but it wasn’t wrong, either.”

“How can it be both?”

“There’s an old line in Science — ‘Your data’s fine but your conclusions are … nuts.’ They use a different word in private. Suppose you land on a desert island and find a pirate’s treasure chest. Should the headlines say you’d found a treasure?”

“Naw, the chest might be empty or full of rocks or something.”

“Mm-hm. So, going back to that post… I was working from some reports on NASA’s Lunar Reconnaissance Orbiter. Its LAMP instrument mapped how strongly different Moon features reflected a particular frequency of ultraviolet light. That frequency’s called ‘Lyman‑alpha.’ Astronomers care about it because it’s part of starlight, it’s reflected by rock, and it’s specifically absorbed by hydrogen atoms. Sure enough, LAMP found some places, typically in deepshadow craters, that absorbed a lot more Lymanalpha than other places.”

“And you wrote about how hydrogen atoms are in water molecules and the Moon’s deep crater floors near the poles are sheltered from sunlight that’d break up water molecules so LAMP’s dark spots are where there’s water. And you liked how using starlight to find water on the Moon was poetical.”

“Uhh… right. All that made a lot of sense at the time and it still might be true. Scientists leapt to the same hopeful conclusion when interpreting data from the MESSENGER mission to Mercury. That one used a neutron spectrometer to map emissions from hydrogen atoms interacting with incoming cosmic rays. There again, the instrument identified hydrogen collected in shaded craters at the planet’s poles. Two different detection methods giving the same positive indication at the same type of sheltered location. The agreement seemed to settle the matter. The problem is that water isn’t geology’s only way or even its primary way to accumulate hydrogen atoms.”

“What else could it be? Hydrogen ions in the solar wind grab oxide ions from Moon rock and you’ve got water, right?”

“But the hydrogens arrive one at a time, not in pairs. Any conversion would have to be at least a two‑step process. The Moon’s surface rocks are mostly silicate minerals. They’re a lattice of negative oxide ions that’s decorated inside with an assortment of positive metal ions. The first step in the conversion would be for one hydrogen ion to link up with a surface oxide to make a hydroxide ion. That species has a minus‑one charge instead of oxide’s minus‑two so it’s a bit less tightly bound to its neighboring metal ions. Got that?”

“Gimme a sec … OK, keep going.”

“Some time later, maybe a century maybe an eon, another hydrogen ion comes close enough to attack our surface hydroxide if it hasn’t been blasted apart by solar UV light. Then you get a water molecule. On balance and looking back, we’d expect most of the surface hydrogen to be hydroxide ions, not water, but both kinds would persist better in shadowed areas.”

“OK, two kinds of hydrogen. But how do we tell the difference?”

“We evaluate processes at lower‑energies. Lyman‑alpha photons pack over 10 electronvolts of energy, enough to seriously disturb an atom and blow a molecule apart. O‑H and H‑O‑H interact differently with light in the infra‑red range that just jiggles molecules instead of bopping them. For instance, atom pairs can stretch in‑out. Different kinds of atom bind together more‑or‑less tightly. That means each kind of atom pair resonates at its own stretch energy, generally around 6 microns or 0.41 electronvolts. NASA’s Cassini mission had a mapping spectrometer that could see down into that range. It found O‑H stretching activity all over the Moon’s surface.”

“But that could be either hydroxyls or water.”

“Exactly. The new news is that sensors aboard NASA’s airborne SOFIA mission map light even deeper into the infra‑red. It found the 3‑micron, 0.21‑electronvolt signal for water’s V‑shape scissors motion. That’s the water that everybody’s excited about.”

“Lots of it?”

“Thinly spread, probably, but stay tuned.”

~~ Rich Olcott

A Star’s Tale

It’s getting nippy outside so Al’s moved his out‑front coffee cart into his shop. Jeremy’s manning the curbside take‑out window but I’m walking so I step inside. Limited seating, of course. “Morning, Al. Here’s my hiking mug, fill ‘er up with high‑test and I’ll take a couple of those scones — one orange, one blueberry. Good news that the Governor let you open up.”

“You know it, Sy. Me and my suppliers have been on the phone every day. Good thing we’ve got long‑term relationships and they’ve been willing to carry me but it gets on my conscience ’cause they’re in a crack, too, ya know?”

“Low velocity of money hurts everybody, Al. Those DC doofuses and their political kabuki … but don’t get me started. Hey, you’ve got a new poster over the cash register.”

“You noticed. Yeah, it’s a beaut. Some artist’s idea of what it’d look like when a star gets spaghettified and eaten by a black hole. See, it’s got jets and a dust dusk and everything.”

“Very nice, except for a few small problems. That’s not spaghettification, the scale is all wrong and that tail-looking thing … no.”

Artist’s impression of AT2019qiz. Credit: ESO/M. Kornmesser
Under Creative Commons Attribution 4.0 International License

“Not spaghettification? That’s what was in the headline.”

“Sloppy word choice. True spaghettification acts on solid objects. Gravity’s force increases rapidly as you approach the gravitational center. Suppose you’re in a kilometer-long star cruiser that’s pointing toward a black hole from three kilometers away. The cruiser’s tail is four kilometers out. Newton’s Law of Gravity says the black hole pulls almost twice as hard on the nose as on the tail. If the overall field is strong enough it’d stretch the cruiser like taffy. Larry Niven wrote about the effect in his short story, Neutron Star.”

“The black hole’s stretching the star, right?”

“Nup, because a star isn’t solid. It’s fluid, basically a gas held together by its own gravity. You can’t pull on a piece of gas to stretch the whole mass. Your news story should have said ‘tidal disruption event‘ but I guess that wouldn’t have fit the headline space. Anyhow, an atom in the star’s atmosphere is subject to three forces — thermal expansion away from any gravitational center, gravitational attraction toward its home star and gravitational attraction toward the black hole. The star breaks up atom by atom when the two bodies get close enough that the black hole’s attraction matches the star’s surface gravity. That’s where the scale problem comes in.”

Al looks around — no waiting customers so he strings me along. “How?”

“The supermassive black hole in the picture, AT2019qiz, masses about a million Suns‑worth. The Sun‑size star can barely hold onto a gas atom at one star‑radius from the star’s center. The black hole can grab that atom from a thousand star‑radii away, about where Saturn is in our Solar System. The artist apparently imagined himself to be past the star and about where Earth is to the Sun, 100 star‑radii further out. Perspective will make the black hole pretty small.”

“But that’s a HUGE black hole!”

“True, mass‑wise, not so much diameter‑wise. Our Sun’s about 864,000 miles wide. If it were to just collapse to a black hole, which it couldn’t, its Event Horizon would be about 4 miles wide. The Event Horizon of a black hole a million times as massive as the Sun would be less than 5 times as wide as the Sun. Throw in the perspective factor and that black circle should be less than half as wide as the star’s circle.”

“What about the comet‑tail?”

“The picture makes you think of a comet escaping outward but really the star’s material is headed inward and it wouldn’t be that pretty. The disruption process is chaotic and exponential. The star’s gravity weakens as it loses mass but the loss is lop‑sided. Down at the star’s core where the nuclear reactions happen the steady burn becomes an irregular pulse. The tail should flare out near the star. The rest should be jagged and lumpy.”

“And when enough gets ripped away…”

“BLOOEY!”

~~ Rich Olcott

  • Thanks to T K Anderson for suggesting this topic.
  • Link to Technical PS — Where Do Those Numbers Come From?.