Eclipse Correction

From: Robin Feder <rjfeder@fortleenj.com>
To: Sy Moire <sy@moirestudies.com>
Subj: Bad diagram

My Dad said I should write you about the bad video that is in your “Elliptically Speaking” post. It shows a circle around a blue dot that’s supposed to be the Earth, and an oval shape that’s supposed to be the Moon’s orbit around the Earth, and blinking thingies that are supposed to show what eclipses look like. I took a screen shot of the video to show you. But the diagram is all wrong because it has two places where the Moon is far away from the Earth and two places where the Moon is closer and that’s wrong. All the orbit pictures I can find in my class books show there’s only one of each. Please fix this. Sincerely, Robin Feder


From: Sy Moire <sy@moirestudies.com>
To: Robin Feder <rjfeder@fortleenj.com>
Subj: Bad Diagram

You’re absolutely correct. That’s a terrible graphic and I’ll have to apologize to Cathleen, Teena and all my readers. Thanks for drawing my attention to my mistake. When I built that animation I was thinking too much about squashed circles and not enough about orbits. I’ve revised the animation, moving the Earth and its circle sideways a bit. Strictly speaking, Earth and the Moon both orbit around their common center of gravity. Also, the COG should be at one focus of an ellipse. An ellipse has two foci located on either side of the figure’s center. However, both of those corrections for the Earth‑Moon system are so small at this scale that you wouldn’t be able to see them. I drew my oval (not a true ellipse) out of scale to make the effect more visible.

Moving the oval so that there’s only one close place and one far place (astronomers call them perigee and apogee) meant that I also had to move the blinking eclipse markers. I think the new locations do a better job of showing why we have both annular and total eclipses. You just have to imagine the Sun being beyond the Moon in each special location so that the eclipse shadow meets the Earth.

I’ve swapped out the bad diagram on the website. Here’s a screenshot of the better diagram I’ve put in its place.

Please remember to use proper eclipse-viewing eyewear when you look at this October’s annular eclipse. And give my regards to your Dad.

~~ Rich Olcott

  • Thanks to Ric Werme for gently pointing out my bogus graphic.

Elliptically Speaking

“Oh. I have one other eclipse question, Dr O’Brien.”

“What’s that, Teena?”

“Well, I found a list of solar eclipses—”

“An interesting place to start, especially for a 10‑year‑old.”

“And it had three kinds of eclipse — total, partial and annual. ‘Total‘ must be when the Moon covers up the whole Sun like when I wink my eye tight. ‘Partial‘ sounds like when I only squinch up my eye like this. I guess that happens when we’re just on the edge of an eclipse track so we still see part of the Sun like we see just part of the Moon most of the time. But my eye wide open is like there’s no eclipse at all. There’s no fourth way to hold my eye left over for ‘annual.’ Besides, ‘annual‘ means ‘every year.’ Is there some special kind of eclipse that comes every year but we don’t see it?”

Cathleen doesn’t quite hide a smile. “Sorry, dear, I think you’ve misread a word. It’s not ‘annual,’ it’s ‘annular.’ They’re very similar and they both came from Latin but they came from different Latin words and have different meanings today. ‘Annual‘ means ‘yearly,’ just as you said. ‘Annular‘ means ‘ring‑shaped‘, like a circle with a hole in the middle.”

“A ring‑shaped eclipse? Is there a big hole in the Moon we only see sometimes?”

“Quite the reverse. The Moon and its shadow are compact, no holes even in an annular eclipse. What we see in those eclipses is a ring of the Sun’s light around the outside of a black disk of Moon‑shadow. The bright ring is called an ‘annulus‘ and you must be very careful to use the special dark glasses to look at it.”

“But … Uncle Sy said the reason we’re so lucky we can see eclipses is that the Moon is just the right size to match the size of the Sun. Does the Moon get smaller for an annular eclipse?”

“Hold up your thumb. Now move your arm out until your thumb just covers my head. Can’t see me at all, can you? Now move your arm out just a little farther until you can see my hair but not my face. Got it? Your thumb didn’t change size, did it?”

“No, it just looked smaller and I could see more of you past it.”

“Right. That’s how an annular eclipse works.”

<drawing Old Reliable from its holster> “Excuse me, Cathleen, I think this might help.”

“What are all those circles, Uncle Sy, and why does it blink?”

“It’s like a map of space. The blue disk represents Earth and the gray disk represents the Moon. If the Moon were always the same distance from Earth it’d follow the black circle, but it doesn’t. It follows the red line which isn’t a true circle. It’s a special shape of squashed circle, called an ellipse. Very few moons or planets follow a truly circular orbit — their track is almost always elliptical to some degree. Now you tell me what the blinky things are about and don’t say it’s when the Moon stops in its orbit because it doesn’t. The animation motion pauses to call attention to when the eclipses happen.”

“Okayyy… Oh! They’re what we’d see in an eclipse, right? The red … ellipse?… brings the Moon closer to us or farther away. When it’s close like over there it’s like my thumb covering Dr O’Brien’s whole head and we don’t see any of the Sun and that’s a total eclipse, right? When we have an eclipse if the Moon’s outside of that circle like on the side, it’s like my thumb farther away and that’s why your picture has the orange ring, it’s an annulus, right?”

“You broke the code, Teena, Well done!”

“I think it’s silly to have two words like eclipse and ellipse that sound so much alike but they’re so different. Like annual and annulus.”

“Sorry about that, sweetie, but we pretty much have to take the language as we find it. English has a long and complicated history. Sometimes I’m surprised it works at all. Sometimes it doesn’t and that makes problems.”

~~ Rich Olcott

Eclipse Vectors

“I think I understand why we have eclipse seasons, Dr O’Meara, but why do the two eclipses in a season travel in such different directions?”

“Put this question on top of Teena’s, Cathleen. Everyone knows the Sun rises in the East because the Earth rotates towards the East. But it seems like eclipses fly eastward even faster than the Earth turns. If that’s true, why?”

“As an Astronomy educator, Sy, I wish ‘everyone’ were truly everyone. You wouldn’t believe the arguments I get from some students when I’m trying to teach 21st Century material. Why are they even in my class?”

“We can only wonder. You and the Flatties, Kareem and the 6000‑year Earthers, poor Jennifer over in Public Health having to cope with the anti‑vaxxers; these contrarians seem to be everywhere. They’re excellent models of Orwellian doublethink — they happily use their science‑dependent smart phones, internet and GPS while they’re trashing Science. Split brains? I dunno.”

“C’mon, Uncle Sy, that’s boring grown‑up stuff. What about my eclipses? Why do they go north or south like that? Does it have to do with those angles that were drawn too big?”

“Sorry, sweetie. Dr O’Meara showed us that the Moon can only make an eclipse if it’s near the Solar System’s plane where Earth’s center stays. The angle of the Moon’s orbital plane only matters when the Moon is away from there.”

“Earth’s center is the Equator! All the eclipses should go on the Equator. But they don’t. That’s wrong.”

“The Equator’s around Earth’s center, Teena, but so are other circles. Think of your globe at home. Does the North Pole point straight up?”

“Noo‑oh … you mean the tilt? Mom said that was about Winter and Summer.”

“Well, she’s not wrong. In the northern hemisphere we have Summer when the North Pole tilts toward the Sun, Winter when it tilts away. That’s only part of the story, though. In Spring and Fall the tilt is broadside to the Sun. Not as hot as Summertime, not as cold as Winter. Those three gyroscopes give us eclipse seasons. But they do more. Look at these diagrams.”

“Sorry, I don’t understand what you’re showing me.”

“No worries. In the upper one, the Earth’s in the rear. The North Pole is the green arrow. The Equator’s the yellow band. Pole and Equator are both tilted 23°. The Sun is in front, shining at the Earth. The Earth orbits the Sun counterclockwise so it’s moving to our left. Moving in that direction gives the northern hemisphere more and more daylight so it’s northern Springtime going towards Summer. Okay?”

“Yyyes….”

“Good. The sketch shows eclipse conditions, when the Moon and its shadow are in Earth’s orbital plane. The only places on Earth that can see the eclipse are on the red band. That’s another circle where the plane intersects the Earth’s surface. What direction does that band point on Earth?”

<chortle> “It goes northeast, just like I noticed on that map! Okay, let me think about the other picture… The North Pole’s a gyroscope and doesn’t change direction so we’re looking at us from the other side … Yeah! That red band goes southeast on Earth. Perfect! … Umm, everything’s upside‑down for Bindi in Australia, so does she … Wait, in the upper picture when it’s Springtime for us it’s Autumn for her so her Autumn eclipses go northeast, just like our Springtime ones do! And her Spring’s the bottom picture and her Springtime eclipses go southeast like our Autumn ones, right?”

“Smart girl! I’m going to tell your Mom about your thinking and she’ll be so proud of you. Now, Cathleen, how about speedy eclipses going east faster than the Earth does?”

“It’s not the eclipse going fast, Sy, it’s the Moon. Relative to the Sun‑Earth line, the Moon in its orbit is traveling eastward at just under 3700 kilometers per hour. Meanwhile, a point on Earth’s Equator is heading in the same direction at just under 1700 kph. Places away from the Equator move even slower. The Moon and its shadow win the race going away.”

~~ Rich Olcott

  • Thanks again to Naomi Pequette for her expertise and eclipse‑related internet links.

Eclipse Seasons

“C’mon in, Sy.”

“Morning, Cathleen. You know my niece Teena.”

“Hi, Teena. What brings you here to my office?”

“I’m working on a school project about eclipses, Dr O’Meara, and I noticed something weird. Uncle Sy said you could explain it to me. You know how an eclipse isn’t in just one place, the Moon writes its shadow along a track?”

“Of course, dear, I do teach Astronomy.”

“Sorry, I was just giving context.” <Cathleen and I give each other a look.> “Anyhow, I found this picture of lots of eclipse tracks and see how they weave together almost like cloth?”

“Oh, it’s better than that, Teena. Look at the dates. Is there a pattern there, too?”

“Oooh, the Springtime ones go northeast and the Fall ones go southeast. Hey, I don’t see any in the Summer or Winter! Why is that?”

“It’s complicated, because it’s the result of several kinds of motion all going on at once. Have you ever played with a gyroscope?”

“Uh-huh, Uncle Sy gave me one for my birthday last year. He said that 10 years was old enough I could make it spin without hitting someone’s eye with the string. He was mostly right and I promise I really wasn’t aiming at Brian.”

<another look> “Well … okay. What’s a gyroscope’s special thing?”

“Once you start it spinning it tries to stay pointing in the same direction, except mine acts dizzy a little. Uncle Sy says the really good ones they put in satellites don’t get hardly get dizzy at all.”

“Good, you know gyroscope behavior. Planets spin, too, though a lot slower than your gyroscope. Do you know about planets?”

“Oh yes, when I was small and we looked at the eclipse my Mom and Uncle Sy explained about how we live on a planet that goes round the Sun and sometimes the Moon gets in the way and makes a shadow on us but when the Earth turns so we’re facing away from the Sun we’re in Earth’s shadow.”

“Nice. Well, here’s a diagram about how eclipses happen. It shows four Earth‑images at special points in its orbit. Each Earth has Moon‑images at two special points in the Moon’s orbit. There’s also an arrow coming out of each Earth’s North Pole to show the axis that the Earth spins on. We’ve got three circular motions and each one acts like your gyroscope.”

Adapted from a graphic by Nela, licensed under CCA-SA 4.0

“Does the Moon spin, too?”

“We talked about this a couple years ago, sweetie. The Moon always keeps one face towards the Earth so it spins once each month as it orbits around the Earth. Dr O’Meara’s just using a single circle to cover both, okay?”

“Okay. So there’s three gyroscopes, four really but one’s hiding. The picture says that all three point in different directions, right, and they stay that way?”

“Perfect.”

“Excuse me, but those angles don’t look right. The Earth axis is pointed too close or something.”

“Sharp, Sy. You’re partially correct. Actually, that axis is at a proper 23° angle from the perpendicular to Earth’s orbital plane. It’s the lunar orbital plane and its axis that are off. They’re supposed to be at a 5° angle to Earth’s plane but they’re drawn at 15° to highlight that important line where the two planes meet. The gyroscopes keep that line steady all year.”

“What’s so important about the line?”

“If the Moon is too far above or below Earth’s plane, its shadow is too far above or below Earth to make an eclipse. Eclipses only happen when the line runs through the Sun AND when the Moon is close to the line. The line only runs through the Sun in the Spring and Fall, in this century anyway, so those are our eclipse seasons.”

“Why not every century?”

“A century ago, the eclipses came a few months earlier. The gyroscopes slowly drag the line around Earth’s solar orbit, shifting when the eclipse seasons arrive. If you want a New Year eclipse you’ll have to wait a long, long time.”

~~ Rich Olcott

  • Thanks to Naomi Pequette, Peak Nova Solutions, whose “Eclipses” presentation inspired this post.

Shadow Play

“Uncle Sy! Uncle Sy! You’re back! Didja see the red moon?”

“Hi, Teena. Good to be home. No, I didn’t get to see the red moon. Where I was it didn’t even get red.”

“I saw it! I saw it! Mommie put me to bed early so I could wake up to see it earrrly in the morning. I saw the red part but the Moon looked smaller than it does coming up from behind the houses and they said it was going to be sooo big but it wasn’t. Anyway, I didn’t stay awake. Why was it red?”

“Was it really red red like your favorite crayon?”

“Mm-no, more like orange-y red.”

“Sunset color, right?”

“Uh-huh. Was it sunset on the Moon?”

“Sort of. The sunsets we see on Earth are red mostly because our air absorbs the Sun’s blue light when we’re looking across the atmosphere. Only the red light gets through to our eyes. Remember the solar eclipse we saw, when the Moon came exactly between us and the Sun? Moon eclipses are inside out from that. We come between the Moon and the Sun. The only light getting past us has gone across our atmosphere just like sunset light does so it’s orange‑y red like a sunset.”

“Oooh … does the Sun ever get between us and the Moon?”

“Don’t worry, Sweetie. We’re far, far from the Sun. Mr Newton’s Laws of Motion say that we and the Moon will be waltzing out here for a long, long time.”

“Whee, we’re dancing around the Sun! MOMmie, Uncle Sy’s here!”

“Hi, Sis. You saw the eclipse, then.”

“Mm-hm. I realized while I was watching it that lunar phase shadows work differently from eclipses.”

“Oh? How so?”

“The shadow shapes are different, for one. The edge of the lunar phase shadow always passes through both poles. In a solar eclipse the shadow only reaches the poles at totality, and in a lunar eclipse there’s this almost straight shadow arc that marches across the whole face.”

“Interesting. You said ‘for one,’ so what else?”

“Eclipse shadows move in the wrong direction. Starting from a full moon, the shadow comes in from the right until you get to new moon, then it falls away to the left until you get back to full moon. Agreed?”

“I always get confused. I’ll take your word for it.”

“I looked it up. In two places. Anyhow, in both kinds of eclipse the shadow creeps from left to right. Just backwards from the lunar phases. I wonder if that has anything to do with ancient societies thinking that an eclipse is somehow evil.”

“Mommie, you know you’re not supposed to use words I don’t know unless you’re keeping secrets. What’s lunar faces?”

“Sorry, Teena, not secret. Lunar means Moon. Sy, can you show her phases on Old Reliable?”

“Sure. Here’s a quick sketch, Teena. Pretend that the little ball is the Moon going around the Earth. The Sun is off to the right. You know the Moon goes around the Earth and it always keeps the same side towards us, right?”

“That’s the Man In The Moon except it’s really mountains and stuff pointing at us.”

“That’s what the little triangle shows, like it’s his nose. See how sometimes it’s in the light and sometimes it’s in shadow? The big ball is what we see when the Moon is in each position. When the Man is facing straight towards the Sun we call that the Full Moon phase. When he’s completely in shadow that’s the New Moon phase. There’s names for other special positions, and all of the special positions are phases, OK?”

“I suppose you have a logical explanation for the shadows?”

“Sure, Sis. It’s all about where the shadow’s being cast and how the shadow caster is moving at the time. This diagram tells the story. Nearly everything in the Solar System runs counterclockwise—”

“Widdershins.”

“… Right. Every orbit runs left‑to‑right half the time, right‑to‑left the other half. The two kinds of eclipse happen in opposite halves. The geometry works out that we see both eclipse shadows move left‑to‑right. See?”

“Cool.”

~~ Rich Olcott

  • Thanks to Alex for the question, and to Lori for the shadow observation, which I hadn’t seen discussed before.

A Perspective on Gravity

“I got another question, Moire.”

“Of course you do, Mr Feder.”

“When someone’s far away they look smaller, right, and when someone’s standing near a black hole they look smaller, too.  How’s the black hole any different?”

“The short answer is, perspective depends on the distance between the object and you, but space compression depends on the distance between the object and the space-distorting mass.  The long answer’s more interesting.”

“And you’re gonna tell it to me, right?”

“Of course.  I never let a teachable moment pass by.  Remember the August eclipse?”

“Do I?  I was stuck in that traffic for hours.”

“How’s it work then?”

“The eclipse?  The Moon gets in front of the Sun and puts us in its shadow. ‘S weird how they’re both the same size so we can see the Sun’s corundum and protuberances.”

“Corona and prominences.  Is the Moon really the same size as the Sun?”

“Naw, I know better than that.  Like they said on TV, the Moon’s about ¼ the Earth’s width and the Sun’s about 100 times bigger than us.  It’s just they look the same size when they meet up.”

“So the diameter ratio is about 400-to-1.  Off the top of your head, do you know their distances from us?”

“Millions of miles, right?”

“Not so much, at least for the Moon.  It’s a bit less than ¼ of a million miles away.  The Sun’s a bit less than 100 million miles away.”

“I see where you’re going here — the distances are the same 400-to-1 ratio.”

“Bingo.  The Moon’s actual size is 400 times smaller than the Sun’s, but perspective reduces the Sun’s visual size by the same ratio and we can enjoy eclipses.  Let’s try another one.  To keep the arithmetic simple I’m going to call that almost-100-million-mile distance an Astronomical Unit.  OK?”

“No problemo.”

“Jupiter’s diameter is about 10% of the Sun’s, and Jupiter is about 5 AUs away from the Sun.  How far behind Jupiter would we have to stand to get a nice eclipse?”

“Oh, you’re making me work, too, huh?  OK, I gotta shrink the Sun by a factor of 10 to match the size of Jupiter so we gotta pull back from Jupiter by the same factor of 10 times its distance from the Sun … fifty of those AUs.”

“You got it.  And by the way, that 55 AU total is just outside the farthest point of Pluto’s orbit.  It took the New Horizons spacecraft nine years to get there.  Anyhow, perspective’s all about simple ratios and proportions, straight lines all the way.  So … on to space compression, which isn’t.”

“We’re not going to do calculus, are we?”

“Nope, just some algebra.  And I’m going to simplify things just a little by saying that our black hole doesn’t spin and has no charge, and the object we’re watching, say a survey robot, is small relative to the black hole’s diameter.  Of course, it’s also completely outside the event horizon or else we couldn’t see it.  With me?”

“I suppose.”

“OK, given all that, suppose the robot’s as-built height is h and it’s a distance r away from the geometric center of an event horizon’s sphere.  The radius of the sphere is rs.  Looking down from our spaceship we’d see the robot’s height h’ as something smaller than h by a factor that depends on r.  There’s a couple of different ways to write the factor.  The formula I like best is h’=h√[(r-rs)/r].”

“Hey, (r-rs) inside the brackets is the robot’s distance to the event horizon.”

“Well-spotted, Mr Feder.  We’re dividing that length by the distance from the event horizon’s geometric center.  If the robot’s far away so that r>>rs, then (r-rs)/r is essentially 1.0 and h’=h.  We and the robot would agree on its height.  But as the robot closes in, that ratio really gets small.  In our frame the robot’s shrinking even though in its frame its height doesn’t change.”

“We’d see it getting smaller because of perspective, too, right?”

“Sure, but toward the end relativity shrinks the robot even faster than perspective does.”

“Poor robot.”

~~ Rich Olcott

  • Thanks to Carol, who inspired this post by asking Mr Feder’s question but in more precise form.

Teena Meets The Eclipses

“Don’t look up until it suddenly gets really dark, Teena.  I’ll tell you when it’s time.”

“OK, Uncle Sy.  Oooo, look at the house where our tree makes a shadow!  It’s all over crescents!”

“Yep, wherever leaves overlap to make a pinhole, it’s like the one we made in our cardboard.  See, those crescents are just like the one our pinhole beams onto the sidewalk.”

“Yeah.  ‘Cause it’s the same Sun, right?”

“Sure is.”

“Are other little kids seeing the eclipse all over the world?  They’ve got the same Sun, too.”

“No, just the ones who happen to be on the shadow stripe that the Moon paints on the Earth.”

“How many kids is that?”

“Hard to tell.  Some families live where the shadow passes through, some families travel to be there, lots of other families just stay where they are.  No-one knows how many of each.  But we can make some not-very-good guesses.”

“The crescent’s going so slow.  Let’s make guesses while we’re waiting.”

“OK.  Let’s start by imagining that all the world’s people are spread evenly over the land and sea.”

“Even on the ocean?  Like everyone has a little boat?”

“Yep, and sleds or whatever on polar ice, people everywhere.  In our city there are eight blocks to a mile, so if we spread out the people there’d be one person every other block.”

“Every other block.  Like just on the black squares on our checker board.”

“Uh-huh.  The Moon’s shadow today will be a circle about 80 miles across and it’ll travel about 2500 miles across the whole country.  The stripe it paints would cover about 6½ million spread-out people.  Maybe 10 million if you count the people in little boats, ’cause the eclipse starts and ends over the ocean.”Local eclipses

“Lots of people.”

“Yes, but only about one person out of every thousand people in the world.”

“We’re pretty lucky then, huh?”

“Oh, yeah.”

“Are there eclipses on other planets?”

“Of a sort, but only for planets that have a moon.  Poor Mercury and Venus don’t have moons so they never see an eclipse.”

“Aww. … Wait — you said ‘of a sort.’  Are there different kinds of eclipses?”

“You’re very alert this morning.  And yes, there are.  Two that get the publicity and two that we never see on Earth.  It has to do with perspective.”

“Per … perspec…?”

“Perspective.  The word originally meant very careful looking but it’s come to be about how things look from a particular point of view.  See that tree across the street?”

“Yeah.”

“Think your hand is bigger than the tree?”

“Of course not.  I climb that tree.”

“OK, put your hand between your eyes and the tree.”

“Oh!  My hand covers the whole tree!”

“Yup.  Nearer things look big and farther things look small.  That’s perspective.  Eclipses are all about perspective.”How big is the Sun

“How come?”

“The perspective principle works in the Solar System, too.  If you were to travel from Earth to Mars to Jupiter and so on, the Sun would look smaller at each planet.”

“Like the far-away trees look smaller than the close trees.  But what does that have to do with eclipses?”

“A planet gets an eclipse when one of its moons comes between it and the Sun.  That’s what’s happening right now here.  Our Moon is moving between us and the Sun and blocking its light.”

“But I don’t see the Moon, just the carved-out piece.”

“That’s because we’re looking at the unlit side of the Moon.  It’s so dim compared to the rest of the sky.  Anyway, the Moon’s width we see is just about the same as the Sun’s width.  The moons on the other planets don’t match up that well.  On Mars, for instance, its moon Phobos appears less than half the width of the Sun even though the Sun appears only 2/3 as wide as we see it.  Phobos can never cover the Sun entirely, so no true eclipse, just a transit.”

“Can the planet’s moon be bigger?”

“Sure.  On Jupiter, Europa’s width completely blocks out the Sun.  That’s called an occultation.  You can look up now.  Jupiter people can never see that corona.”

“Oooooo, so pretty.  We’re lucky, aren’t we?”

“In more ways than you know, sweetie.”

~~ Rich Olcott