A Wheel in A Wheel

The conversation’s gotten a little dry so I carry our mugs over to Al’s coffee tap for refills. Vinnie’s closest so he gets the first one. “Thanks, Sy. So you say that a black hole has all these other things on the outside — the photon sphere and that weird belt if it’s rotating and the accretion disk and the jets which is what I asked about in the first place.”

Astrophysicist-in-training Newt Barnes gets the second mug. “My point, Vinnie, is they all act together. You can’t look at just one thing. Thanks, Sy. You know, you should’ve paid more attention to the ergosphere.”

“Ergosphere?”

“Yeah, Vinnie, that pumpkin-shaped layer Sy described — actually, more a pumpkin shell. The event horizon and photon sphere take up space inside of it and the accretion disk’s inner edge grazes its equator. The pumpkin is fatter for a more rapidly rotating black hole, but its boundary still dips down to meet the event horizon at the rotational poles. Diagrams usually show it just sitting there but that’s not quite true.”

“It wobbles?”

“No, the shape stays in place, locked to the event horizon just like the diagrams show. What’s inside it, though, is moving like mad. That’s what we’d see from a far-away frame, anyhow.”

Frames again, I knew it. The pumpkin’s got frames?”

“With extreme-gravity situations it’s always frames, Vinnie. The core’s gravity pulls in particles from the accumulation disk. They think they’re going straight. From an outsider’s perspective everything swerves spinwise at the ergosphere’s boundary. Even if a high-speed particle had been aimed in the other direction, it’s going spinwise once it’s inside the ergosphere.”

“Who’s making it do that?”

“Frame-dragging on steroids. We’ve known for a century that gravity from any massive body compresses the local space. ‘Kilometers are shorter near a black hole,’ as the saying goes. If the body is rotating, that counts too, at least locally — space itself joins the spin. NASA’s Gravity B probe detected micromicrodegree-level frame rotation around Earth. The ergosphere, though, has space is twisted so far that the direction of time points spinwise in the same way that it points inwards within the event horizon. Everything has to travel along time’s arrow, no argument.”

“You said ‘local‘ twice there. How far does this spread?”

“Ah, that’s an important question. The answer’s ‘Not as far as you think.’ Everything scales with the event horizon’s diameter and that scales with the mass. If the Sun were a non-rotating black hole, for instance, its event horizon would be only about 6 kilometers across, less than 4 miles. Its photon sphere would be 4.5 kilometers out from the center and the inner edge of its accretion disk would be a bit beyond that. Space compression dies out pretty quick on the astronomical scale — only a millionth of the way out to the orbit of Mercury the effect’s down to just 3% of its strength at the photosphere.”

“How about if it’s rotating?”

“The frame-dragging effect dies out even faster, with the cube of the distance. At the same one-millionth of Mercury’s orbit, the twist-in-space factor is 0.03% of what it is at the photosphere. At planet-orbit distances spin’s a non-player. However, in the theory I’m researching, spin’s influence may go much further.”

“Why’s that?”

“Seen from an outside frame, what’s inside the ergosphere rotates really fast. Remember that stuff coming in from the accretion disk’s particle grinder? It ought to be pretty thoroughly ionized, just a plasma of negative electrons and positive particles like protons and atomic nuclei. The electrons are thousands of times lighter than the positive stuff. Maybe the electrons settle into a different orbit from the positive particles.”

“Further in or further out?”

“Dunno, I’m still calculating. Either way, from the outside it’d look like two oppositely-charged disks, spinning in the same direction. We’ve known since Ørsted that magnetism comes from a rotating charge. Seems to me the ergosphere’s contents would generate two layers of magnetism with opposite polarities. I think what keeps the jets confined so tightly is a pair of concentric cylindrical magnetic fields extruded from the ergosphere. But it’s going to take a lot of math to see if the idea holds water.”

“Or jets.”

~~ Rich Olcott

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.