“Ok, Sy, you said Pascal explained the ‘water seeks its level‘ thing before Newton got a chance to. Newton was so smart, though — how’d Pascal beat him to it?”
“Pass me a strawberry scone, Al, and I’ll tell you why.”
“Anything for free food, eh, Sy? Alright, here.”
“Oferpitysake, Al, add it to my tab like always. Too much hassle putting on this face mask just to walk from my car to the scones. Pascal had a 20‑year head start — did his hydrostatics work when Newton wasn’t even in his teens. Unfortunately, Pascal died when Newton was only half-way through college. Whoa, if only Pascal had been alive and productive in France while Newton was in his science years in England and Liebniz was churning at everything in northern Germany. What advances might they have made arguing with each other? Where would our Math and Physics be today?”
“They didn’t like each other?”
“Newton didn’t like anybody. He and Liebniz feuded for decades over who invented calculus. Pascal and Liebniz probably would have gotten along fine — Liebniz could make nice with everyone except Newton. Come to think of it, Newton and Pascal had a lot in common. Newton was a preemie and Pascal was seriously ill for the first year of his life, never got much better. Newton wrote his first formal paper at 22; Pascal publicly proved that vacuums exist by creating some when he was 24. On the flip side, Pascal was 33 when he presented his studies of what we now call the Pascal Triangle but Newton waited until he was 44 to publish his Principia. And each of them spent much of the final quarter of his life on religious, even mystical matters.”
“So did Newton and Pascal both do much about money and water?”
“Not about the combination, though both had a lot to do about each one. Newton was Master of England’s Royal Mint and spent much of his time in office chasing down counterfeiters. Pascal wasn’t a gambler but Fermat was and the two of them teamed up to invent the probability theories that power today’s gaming, finance and insurance industries. So there’s that. Pascal and Newton both pioneered the science of fluids but from different perspectives. Pascal looked at static situations — comparing atmospheric pressure at two different altitudes, that sort of thing. Newton, as usual, studied change — in this case how fluids flow.”
“Pour water into a pipe and it pours out the other end. What’s to study?”
“Measuring how fast it pours and how that’s affected by the pressure and the pipe and what’s being poured. Newton explored the motion of fluids in exhausting detail in Book II of his Principia. As you’d expect, he found that the flow rate of water or any of the other fluids he investigated rises with the pressure and with the cross-sectional area of the pipe. Being Newton, though, he also also considered forces that resist flow. Think about it — the pipe itself doesn’t move and neither does the layer of fluid right next to the pipe’s walls. The flow rate ramps up from zero at the walls to full-on at the center of the pipe. The ramp-up rate depends on the fluid’s viscosity, another concept that Newton discovered or invented depending on how you look at it. Viscosity measures the drag force the slower layers exert on their faster neighbors. Fluids like molasses are viscous because their molecules are really good at grabbing onto molecules in the layers next door.”
“Where’s money fit into this picture?”
“I’m getting to that. Newton thought that each kind of fluid had its own viscosity, always the same. Not quite — temperature makes a difference and there’s non‑Newtonian materials like Silly Putty whose viscosity depends on how fast you yank on them. But the weirdest non‑Newtonian fluid is ultra‑low‑temperature liquid helium. It’s a superfluid and has zero viscosity. The helium atoms experience absolutely no drag from their neighbors and can sneak through the tiniest cracks. Money does the same, right? Each dime and dollar flows with no drag from its cousins.”
“Money’s a superfluid?”
“Yup. Think how it leaks out of your pocket.”
“Uh-huh. … Hey, Sy, about that tab…”

~~ Rich Olcott