Dimensional Venturing Part 5 – You Ain’t From Around Here, Are You?

OK, I’ll admit it, back in the day I read a lot of comics.  Even then, though, I was skeptical — “Wait, how could Superman just pick up that building?  It’d fall apart!”

But I was intrigued by one recurring character, Mr Mxyzptlk, a pixie-like “visitor from the 5th dimension.”   His primary purpose in life (other than getting us to buy more comics) seemed to be to play tricks on or otherwise torment Our Hero.

Mxycus 2Mxy wasn’t the only comics character coming in “from another dimension.” It seemed like the entire Marvel team (both sides) was continually flickering out of and into our universe that way. How often did Jane Grey die and then somehow get cloned or refreshed?  (BTW, if the accompanying cartoon is a little obscure, show it to the friendly clerks at your local comics store — it may give them a chuckle.)

But my question was, where was that dimension Mxy came from?  I got an answer, sort of, when our geometry teacher explained that a dimension is just a direction you could travel.  Different dimensions are directions at right angles to each other.  She was right (see my first post in this series), at least in the context of then-HS math, but that explanation opened an editorial issue that’s never been properly settled.

A dimension is a direction, not a location.  You can’t be “from” a fifth or sixth or nth dimension any more than you can be from up.  If there is a spatial fifth dimension, we’re already “in” it in the same sense that we’re already somewhere along east-to-west and somewhen along past-to-future.

What’s going on is that for the purpose of the story, the authors want the character to come from somewhere very else.  We often associate a place with the direction to it — the sun rises in the east, Frodo departs to the west,  Heaven is up, Hell is down — but those are all directions relative to our current location.  We even associate future times as being in front of us and past times behind us (there’s that 4th dimension again).

Mash_sign_post
The M*A*S*H signpost, now at the Smithsonian. Photo by Steven Williamson., in commons.wikimedia.org/wiki/File:Mash_sign.jpg

But a place is more specific than a direction — to navigate to a certain there you need to know the direction and the distance (or another quantity that stands in for a distance).  That matters.  Jimmie Rodgers sang, “Twelve more miles to Tucumcari” as he kept track of the distance left to go along the road he was traveling.  Or away from the town, as it turned out.

Physicists have lots of uses for the combination of a direction and a magnitude, so many that they gave the combination a name — a vector.  The vector may represent a direction and a distance, a direction and the strength of a magnetic field, or a direction and any quantity that happens to be useful in the application at hand.  A wind map uses vectors of direction and wind speed to show air flow.  Here’s a very nice wind map of the US, and I love NOAA’s wind map of the world.  Vectors will be real useful when we start talking about black holes.

OK, so Mr Mxyzpltk (the spelling seemed to vary from issue to issue of the comic) comes from somewhere along a fifth dimension, but they never tell us from how far away.

Next week –As Steve Martin said, “Let’s get small, really small.”

~~ Rich Olcott

Dimensional Venturing Part 4 – To infini-D and beyond!

apple plumNow that you’ve read my previous posts and have the 4-D thing working well, you’re ready to go for a few more dimensions.  Consider the apple that struck Isaac Newton’s head.  The event occurred in 1665, in England at 52°55´N by 0°38´E, roughly three feet above ground level.  The apple, variety “Flower of Kent,” weighed about 8 ounces and was probably somewhat past fully ripened.  Got that picture in your head?  You’re doing great.

Now visualize the apple taking thirty seconds to move twenty feet diagonally upward, northward and eastward as it morphs to an underripe 4-ounce Damson plum.

The change you just imagined followed an eight-dimensional path: three dimensions of space, one of time, one of weight, one for degree of ripeness, and two category dimensions, species and variety.

Length in a given direction is only one kind of dimension, as Sir Isaac’s example demonstrates.  A mathematician would say that a dimension is a set of values that can be traversed independently of any other set of values. A dimension can be confined to a limited range (360 degrees in a circle) or be infinite like … well, “infinitely far away.”  A dimension might be continuous (think how loudness can vary smoothly from sleeping-baby hush to stadium ROAR and beyond) or be in discrete steps like the click-stops on a digital controller.  The physicists are arguing now whether, at the smallest of scales, space itself is continuous or discrete.

colors_post
Photo by Becky Ziemer

Color vision’s a good example of dimensions in action.  For most of us, our eyes have three types of cone cells, respectively optimized for red, green and blue light.  We see a specific color as some mixture of the three and that’s how the screen you’re looking at now can fake 16 million colors using just three kinds of color-emitting elements (phosphor dots in old-style TVs, LEDs in most devices these days).

Where did that 16 million number come from?  The signal-processing math is seriously techie, but at the bottom the technology uses 256 intensity levels of red, 256 levels of green and 256 levels of blue — each is a discrete dimension with a limited range.  Together they define a 256x256x256-point cube.  Any point in that cube represents a unique mix of primary colors.  One of the colors in the little girl’s hat, for instance, is at the intersection of 249/256 red, 71/256 green, and 48/256 blue.  The arithmetic tells us there are 16,777,216 points (possible mixed colors) in that cube.

Well, actually, there’s one more dimension to color vision because our eyes also have rod cells that simply sense light or darkness.  Neither brown nor grey are in the spectrum that cones care about.  A good printer uses four separate inks to produce browns and greys as mixtures of three dimensions of red-green-blue plus one of black.

So color is 3-dimensional, mostly.  But that’s just the start of color vision because most of us have millions of cone cells in each eye.  A mathematician would say that any scene you look at has that number of dimensions, because the intensity registered by one cone can vary in its range independently of all the other cones.

Ain’t it wonderful that you’re perfectly OK with living in a multi-million-dimensional world?

Next week – a word from the other side

~~ Rich Olcott

Dimensional venturing, Part 3 – Klein’s thingy

The Klein bottle is one of the most misunderstood objects in popular math.  Let’s start with the name.  When he initially described the object Herr Doktor Professor Felix Klein said it was a surface.  Being German and writing in German, he used the word Fläche (note the two little dots over the a).  When his paper was translated to English, the translator noticed the shape of the thing but didn’t notice those two little dots.  He misread the word as Flasche, meaning flask or bottle, and the latter word stuck.

Cut Torus
Adapted from “Torus”. Licensed under Public Domain via Commons – https://commons.wikimedia.org/wiki/File:Torus.png

So who was Herr Klein and what was it that he wrote about?  One of the world’s foremost mathematicians in the last quarter of the 19 Century, he specialized in geometry, complex analysis and mathematical physics.  Among his other accomplishments was that as director of a research center at Georg-August-Universität Göttingen in 1895 he supervised Germany’s first Ph.D. thesis written by a woman (Grace Chisholm Young).

As a small part of one of his many papers he noted that a cylinder could be deformed in two different ways to connect its two ends. The first way is to simply bend it around in a circle to form a torus (or bicycle tire or doughnut, depending on how hungry you are.)

IssueThe other way is more of a challenge — bringing one end to meet the other from inside the cylinder.  The problem is that in the context of Klein’s work, he wasn’t “allowed” to pierce the cylinder’s surface to get it there.  Klein’s solution was simple  — swing it in through the fourth dimension.  Sounds like a cheat, doesn’t it?

Actually, the cheat is in the way KKleinthat the Klein bottle is usually represented.  When the glass artisan created this example, he probably brought one tube up from the bottom, sealed it to the side wall, blew a hole in the side wall at that location, and then brought the outside tube around to join there.  That hole would not have satisfied Herr Klein.

If you’ve looked at my previous post in this series you probably have a pretty good idea of how he would have preferred his Fläche to be depicted — as an animation which exploits time as the fourth dimension.  So here you have it.

Suppose the figure’s wall sprouts from a bud somewhere near the intersection point.  After the figure has grown for a while, the earliest section of the wall begins to recede, disappearing like the Cheshire Cat but leaving its ever-expanding smile behind.  By the time the growth front gets to where the bud was, there’s nothing there to intersect.

Reverse Klein If you opt to build the “bottle” in 4-space, there’s no problem getting those two ends of the cylinder to join up.  A shape that’s impossible to build in three dimensions is easy-peasy (with a little planning) in four.

Yeah, yeah, the Klein bottle has lots of interesting properties, like not having an inside, but we’ll defer talking about them for a while.

Next week, getting past that pesky four-dimension limitation.

~~ Rich Olcott

Dimensional venturing, Part 1 – What’s 4-D?

Whenever a science reporter uses the phrase “string theory,” it’s invariably accompanied by a sentence about tiny strings vibrating in 10 or 11 dimensions. Huh? How can you have more than three? And what does it really mean to say that that comix villain comes from the 4th dimension?  Actually, we live in many dimensions, though it’s not easy to visualize them all at once. Let’s get some practice.

Right now, you’re reading along a line, a one-dimensional path from left to right. Imagine a point drawing a straight line about a foot in front of you. Let that line just hang out there in the air, glowing a gentle green color, with one “edge” (the line itself) and two “corners” (its ends).

As you read down the page, you traverse a series of lines laid out next to each other in the two-dimensional plane of the page. Imagine your green line moving upward, leaving a plane of yellow sparkles behind it. Stop when you’ve got a sparkly yellow square in front of you showing its one face, four edges (one green, three yellow) and four corners (two green, two yellow). Let’s put some red paint on one of those yellow edges.Cube

Stack up enough printed pages and you’re got a 3-dimensional book. Imagine that nice yellow square moving away from you until you’ve got a friendly cube hanging out in the air. Our original line, the green edge, has produced a green face going into the distance. The red edge has built a pink face. All together, the cube has 8 corners, 12 edges and 6 faces. OK, now make your cube disappear.

But we’re not done yet. Time is a dimension. Consider that cube. Before you dreamed it up – nothing. Then suddenly a cube. Then nothing again. During the interval the cube was floating in front of you, the green line was tracing out a green face in time. The pink face was drawing a pink cube. The whole cube, from when it started to exist until it went away, traced out a four-dimensional figure called a tesseract, also called a 4-cube or hypercube. The tesseract was bounded by a cube at the beginning, six cubes while it existed (one from each face of the initial cube), and a cube at the end of its time, for a total of eight.

Just for grins, count up the faces, edges and corners for yourself.

But wait, there’s more. The tesseract doesn’t just sit there, it can spin. Being four-dimensional, it can spin in a surprising way. We’ll get to that next week.

~~ Rich Olcott