# On Gravity, Charge And Geese

A beautiful April day, far too nice to be inside working.  I’m on a brisk walk toward the lake when I hear puffing behind me.  “Hey, Moire, I got questions!”

“Of course you do, Mr Feder.  Ask away while we hike over to watch the geese.”

“Sure, but slow down , will ya?  I been reading this guy’s blog and he says some things I wanna check on.”

I know better but I ask anyhow.  “Like what?”

“Like maybe the planets have different electrical charges  so if we sent an astronaut they’d get killed by a ginormous lightning flash.”

“That’s unlikely for so many reasons, Mr Feder.  First, it’d be almost impossible for the Solar System to get built that way.  Next, it couldn’t stay that way if it had been.  Third, we know it’s not that way now.”

“One at a time.”

“OK.  We’re pretty sure that the Solar System started as a kink in a whirling cloud of galactic dust.  Gravity spanning the kink pulled that cloud into a swirling disk, then the swirls condensed to form planets.  Suppose dust particles in one of those swirls, for whatever reason, all had the same unbalanced electrical charge.”

“Right, and they came together because of gravity like you say.”

I pull Old Reliable from its holster.  “Think about just two particles, attracted to each other by gravity but repelled by their static charge.  Let’s see which force would win.  Typical interstellar dust particles run about 100 nanometers across.  We’re thinking planets so our particles are silicate.  Old Reliable says they’d weigh about 2×1018 kg each, so the force of gravity pulling them together would be …  oh, wait, that’d depend on how far apart they are.  But so would the electrostatic force, so let’s keep going.  How much charge do you want to put on each particle?”

“The minimum, one electron’s worth.”

“Loading the dice for gravity, aren’t you?  Only one extra electron per, umm, 22 million silicon atoms.    OK, one electron it is …  Take a look at Old Reliable’s calculation. Those two electrons push their dust grains apart almost a quintillion times more strongly than gravity pulls them together.  And the distance makes no difference — close together or far apart, push wins.  You can’t use gravity to build a planet from charged particles.”

“Wait, Moire, couldn’t something else push those guys together — magnetic fields, say, or a shock wave?”

“Sure, which is why I said almost impossible.  Now for the second reason the astronaut won’t get lightning-shocked — the solar wind.  It’s been with us since the Sun lit up and it’s loaded with both positive- and negative-charged particles.  Suppose Venus, for instance, had been dealt more than its share of electrons back in the day.  Its net-negative charge would attract the wind’s protons and alpha particles to neutralize the charge imbalance.  By the same physics, a net-positive planet would attract electrons.  After a billion years of that, no problem.”

“All right, what’s the third reason?”

“Simple.  We’ve already sent out orbiters to all the planets.  Descent vehicles have made physical contact with many of them.  No lightning flashes, no fried electronics.  Blows my mind that our Cassini mission to Saturn did seven years of science there after a six-year flight, and everything worked perfectly with no side-trips to the shop.  Our astronauts can skip worrying about high-voltage landings.”

“Hey, I just noticed something.  Those F formulas look the same.”  He picks up a stick and starts scribbling on the dirt in front of us.  “You could add them up like F=(Gm1m2+k0q1q2)/r2.  See how the two pieces can trade off if you take away some mass but add back some charge?  How do we know we’ve got the mass-mass pull right and not mixed in with some charge-charge push?”

“Good question.  If protons were more positive than electrons, electrostatic repulsion would always be proportional to mass.  We couldn’t separate that force from gravity.  Physicists have separately measured electron and proton charge.  They’re equal (except for sign) to 10 decimal places.  Unfortunately, we’d need another 25 digits of accuracy before we could test your hypothesis.”

“Aw, look, the geese got babies.”

“The small ones are ducks, Mr Feder.”

~~ Rich Olcott

This site uses Akismet to reduce spam. Learn how your comment data is processed.