The Case of The Garlic Calzone

I’m on an after-lunch hike through the park, trying to digest one of Pizza Eddie’s roasted garlic calzones. Vinnie’s walking a path that joins mine. “Hey, Sy. Whoa, lemme get upwind of you. You did the garlic calzone again, huh?”

“Yeah, and this time Eddie went two cloves over the line and didn’t roast them enough. Talk to me, take my mind off it, OK?”

“Sure. Uhhh… Let’s get back to kilograms which I got started on from a magazine article saying they’re chucking the old kilogram for something better. We were talking about that but got sidelined with measuring time and distance. So what’s the better thing?”

“They weren’t really sidelines, Vinnie, they were setting-up exercises. The technical world needs a set of measurement standards that are stable and precisely reproducible anywhere, any time. The old kilogram, the IPK, isn’t any of that. It’s a polished cylinder of platinum-iridium alloy in a Paris vault. You can’t reproduce it exactly, just very close. All you can do is bring a candidate object to Paris, measure the mass difference between it and the IPK, and then carry your newly-certified junior standard home to calibrate other masses on down the line. And hope you don’t scratch yours or get fingermarks on it en route.”

“But if we’re talking mass, why did time and distance standards even come into the conversation?”

“Several becauses. High-accuracy time measurement is fundamental to all the modern standards; much of the laser technology that supports the new time standard also plays into the other revised standards; and the time standard is the simplest one to describe and implement. No matter where you are, you can build a cesium-atom maser and fire it up. Start counting peaks in the maser beam and when you reach the defined number you’ve been counting for exactly one second. <burp> Excuse me.”

“You’re ‘scused. Yeah, the distance thing is pretty simple, too, now they’ve defined the speed of light as a standard. Is the mass standard that simple?”

“Nowhere near. In fact, it’s easier to describe the technique than to explain why it meets the requirements. It depends upon an apparatus called the Kibble Balance, named in honor of the late Bryan Kibble who devoted two decades of his life to perfecting the machine. Like with the spring balance we talked about, you estimate an object’s mass by comparing the force of gravity on it to some opposing force that you can quantify. The object in question goes on the Balance’s test pan. The opposing ‘pan’ is essentially a motor-generator, just a permanent magnet and a moving coil of wire.”

“Alright, I know enough about motors to see that’s complicated. To figure the balance of forces you gotta know the magnet’s strength and geometry, the coil’s resistance and geometry and speed, the voltage across it, the current through it… They’re none of them exact numbers. And you gotta account for how gravity can be different somewhere else like on Mars. Hard to see how that’s much of an improvement.”

“That’s the beauty of it. Kibble’s machine and measurement protocol are designed so that many of the finicky quantities drop out of the calculation. What’s left is high-accuracy counting-type numbers.”

“Measurement protocol? It’s not just ‘load the test pan and read a dial’?”

“Nope, it’s a three-step process. First step is to measure g, the acceleration of gravity in the Kibble room. Galileo showed all masses accelerate the same so any mass will do. National standards labs can’t just take a value from a book. At their level of rigor g has measurably different values on different floors of the building. You need a high-accuracy gravimeter — a vertical evacuated pipe with a laser interferometer pointing up from the bottom. Drop a mirrored test mass down the pipe while an atomic clock records exactly when the falling mass passes each of hundreds of checkpoints. Two adjacent distance-time pairs gives you one velocity, two adjacent velocity-time pairs gives you one acceleration, average them all together. <BURP!> You got any antacid tablets?”

“Do I look like somebody with a first aid kit in my purse? Don’t answer that. Here.”

“Thanks. No more garlic calzones, ever.”

~~ Rich Olcott

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.