A Mole’s Tale

Chilly days are always good for a family trip to the science museum. Sis is interested in the newly unearthed dinosaur bones, but Teena streaks for the Space Sciences gallery. “Look, Uncle Sy, it’s a Mars rover. No, wait — it doesn’t have wheels — it’s a lander!”

Artist’s depiction of InSight — credit NASA/JPL-Caltech

A nearby museum docent catches that. “Good observing, young lady. You’re right, it’s NASA’s Insight lander. It touched down on Mars last Thanksgiving Day. While you were having turkey and dressing, we were having a party over here.”

“Is this the real one? How’d you get it back?”

“No, it’s just a model, but it’s full-size, 19½ feet across. We’re never going to get the real one back — those little bitty landing rockets you see around the electronics compartment are too small to get it off the planet.”

“Tronics compartment? You mean the pretty gold box underneath the flat part? Why’d they make it gold?”

“That gold is just the outside layer of a dozen layers of Mylar insulation. It helped to keep the computers in there cool during the super-hot minutes when the lander was coming down through Mars atmosphere. The insulation also keeps the electronics warm during the cold martian night. A thin gold coating on the outermost layer reflects the bad part of sunlight that would crumble the Mylar.”

“Computers like Mommie’s laptop? I don’t see any screens.”

“They don’t need any. No-one’s on Mars to look at them. The instructions all come in from Earth by radio.”

Sis is getting into it. “Look, Sweetie, the platform in the middle’s about the same size as our kitchen table.”

“Yeah, but it’s got butterfly wings. A flying kitchen table, whee!”

“Those wings are solar panels. They turn sunlight into the electricity Insight needs to run things and keep warm. They make enough power for three households here on Earth.”

“What’s the cake box about?”

SEIS —
Seismic Experiment for Interior Structure

“Cake box?”

“Yeah, down there on the floor.”

“Ah. That’s for … have you ever experienced an earthquake?”

“Yes! Suddenly all the dishes in the cupboard went BANG! It was weird but then everything was fine.”

“I’m glad. OK, an earthquake is when vibrations travel through the Earth. Vibrations can happen on Mars, too, but they’re called…”

“Marsquakes! Ha, that’s funny!”

“Mm-hm. Well, that ‘cake box’ is something called a seismometer. It’s an extremely sensitive microphone that listens for even the faintest vibrations. When scientists were testing the real seismometer in Boulder, Colorado it recorded a steady pulse … pulse … pulse … that they finally traced back to ocean waves striking the coast of California, 1200 miles away. Insight took it to Mars and now it’s listening for marsquakes. It’s already heard a couple dozen. They’ve given the scientists lots of new information about Mars’ crust and insides.”

“Like an X-ray?”

“Just like that. We’ll be able to tell if the planet’s middle is molten–“

“Hot lava! Hot lava!”

“Maybe. Earth has a lot of underground lava, but we think that Mars has cooled off and possibly doesn’t have any. That other device on the ground is supposed to help find out.”

HP3 — Heat Flow and
Physical Properties Package

“It looks like The Little Engine That Could.”

“It does, a little, but this one maybe can’t. We’re still waiting to see. That chimney-looking part held The Mole, a big hollow spike with something like a thermometer at its pointy tip. Inside The Mole there’s a hammer arrangement. The idea was that the hammer would bang The Mole 15 feet into the ground so we could take the planet’s temperature.”

“Did the banging work?”

“It started to, but The Mole got stuck only a foot down. The engineers have been working and working, trying different ways to get it down where we want it but so far it’s still stuck.”

“Aww, poor Mole.”

TWINS – Temperature
and Wind for InSight

“Yes. But there’s another neat instrument up on the platform. Here, I’ll shine my laser pointer at it. See the grey thingy?”

“Uh-huh.”

“That’s a weather station for temperature and wind. You can check its readings on the internet. Here, my phone’s browser’s already set to mars.nasa.gov/insight/weather. Can you read the high and low temperatures?”

“Way below zero! Wow, Mars is chilly! I’d need a nice, warm spacesuit there.”

“For sure.”

~~ Rich Olcott

Fly High, Silver Bird

“TANSTAAFL!” Vinnie’s still unhappy with spacecraft that aren’t rocket-powered. “There Ain’t No Such Thing As A Free Lunch!”

“Ah, good, you’ve read Heinlein. So what’s your problem with Lightsail 2?”

“It can’t work, Sy. Mostly it can’t work. Sails operate fine where there’s air and wind, but there’s none of that in space, just solar wind which if I remember right is just barely not a vacuum.”

Astronomer-in-training Jim speaks up. “You’re right about that, Vinnie. The solar wind’s fast, on the order of a million miles per hour, but it’s only about 10-14 atmospheres. That thin, it’s probably not a significant power source for your sailcraft, Al.”

“I keep telling you folks, it’s not wind-powered, it’s light-powered. There’s oodles of sunlight photons out there!”

“Sure, Al, but photons got zero mass. No mass, no momentum, right?”

Plane-polarized electromagnetic wave in motion
Plane-polarized electromagnetic wave
Electric (E) field is red
Magnetic (B) field is blue
(Image by Loo Kang Wee and Fu-Kwun Hwang from Wikimedia Commons)

My cue to enter. “Not right, Vinnie. Experimental demonstrations going back more than a century show light exerting pressure. That implies non-zero momentum. On the theory side … you remember when we talked about light waves and the right-hand rule?”

“That was a long time ago, Sy. Remind me.”

“… Ah, I still have the diagram on Old Reliable. See here? The light wave is coming out of the screen and its electric field moves electrons vertically. Meanwhile, the magnetic field perpendicular to the electric field twists moving charges to scoot them along a helical path. So there’s your momentum, in the interaction between the two fields. The wave’s combined action delivers force to whatever it hits, giving it momentum in the wave’s direction of travel. No photons in this picture.”

Astrophysicist-in-training Newt Barnes dives in. “When you think photons and electrons, Vinnie, think Einstein. His Nobel prize was for his explanation of the photoelectric effect. Think about some really high-speed particle flying through space. I’m watching it from Earth and you’re watching it from a spaceship moving along with it so we’ve each got our own frame of reference.”

“Frames, awright! Sy and me, we’ve talked about them a lot. When you say ‘high-speed’ you’re talking near light-speed, right?”

“Of course, because that’s when relativity gets significant. If we each measure the particle’s speed, do we get the same answer?”

“Nope, because you on Earth would see me and the particle moving through compressed space and dilated time so the speed I’d measure would be more than the speed you’d measure.”

“Mm-hm. And using ENewton=mv² you’d assign it a larger energy than I would. We need a relativistic version of Newton’s formula. Einstein said that rest mass is what it is, independent of the observer’s frame, and we should calculate energy from EEinstein²=(pc)²+(mc²)², where p is the momentum. If the momentum is zero because the velocity is zero, we get the familiar EEinstein=mc² equation.”

“I see where you’re going, Newt. If you got no mass OR energy then you got nothing at all. But if something’s got zero mass but non-zero energy like a photon does, then it’s got to have momentum from p=EEinstein/c.”

“You got it, Vinnie. So either way you look at it, wave or particle, light carries momentum and can power Lightsail 2.”

Lightsail 2 flying over Earth, against a yellow background
Adapted from image by Josh Spradling / The Planetary Society

“Question is, can sunlight give it enough momentum to get anywhere?”

“Now you’re getting quantitative. Sy, start up Old Reliable again.”

“OK, Newt, now what?”

“How much power can Lightsail 2 harvest from the Sun? That’ll be the solar constant in joules per second per square meter, times the sail’s area, 32 square meters, times a 90% efficiency factor.”

“Got it — 39.2 kilojoules per second.”

“That’s the supply, now for the demand. Lightsail 2 masses 5 kilograms and starts at 720 kilometers up. Ask Old Reliable to use the standard circular orbit equations to see how long it would take to harvest enough energy to raise the craft to another orbit 200 kilometers higher.”

“Combining potential and kinetic energies, I get 3.85 megajoules between orbits. That’s only 98 seconds-worth. I’m ignoring atmospheric drag and such, but net-net, Lightsail 2‘s got joules to burn.”

“Case closed, Vinnie.”

~~ Rich Olcott

Sail On, Silver Bird

Big excitement in Al’s coffee shop. “What’s the fuss, Al?”

Lightsail 2, Sy. The Planetary Society’s Sun-powered spacecraft. Ten years of work and some luck and it’s up there, way above Hubble and the ISS, boosting itself higher every day and using no fuel to do it. Is that cool or what?”

“Sun-powered? Like with a huge set of solar panels and an electric engine?”

“No, that’s the thing. It’s got a couple of little panels to power its electronics and all, but propulsion is all direct from the Sun and that doesn’t stop. Steady as she goes, Skipper, Earth to Mars in weeks, not months. Woo-hoo!”

Image by Josh Spradling / The Planetary Society

Never the rah-rah type, Big Vinnie throws shade from his usual table by the door. “It didn’t get there by itself, Al. SpaceX’s Falcon Heavy rocket did the hard work, getting Lightsail 2 and about 20 other thingies up to orbit. Takes a lot of thrust to get out of Earth’s gravity well. Chemical rockets can do that, puny little ion drives and lightsails can’t.”

“Yeah, Vinnie, but those ‘puny’ guys could lead us to a totally different travel strategy.” A voice from the crowd, astrophysicist-in-training Newt Barnes. “Your big brawny rocket has to burn a lot of delta-v just to boost its own fuel. That’s a problem.”

Al looks puzzled. “Delta-v?”

“It’s how you figure rocket propellant, Al. With a car you think about miles per gallon because if you take your foot off the gas you eventually stop. In space you just keep going with whatever momentum you’ve got. What’s important is how much you can change momentum — speed up, slow down, change direction — and that depends on the propellant you’re using and the engine you’re putting it through. All you’ve got is what’s in the tanks.”

Al still looks puzzled. I fill in the connection. “Delta means difference, Al, and v is velocity which covers both speed and direction so delta-v means — “

“Got it, Sy. So Vinnie likes big hardware but bigger makes for harder to get off the ground and Newt’s suggesting there’s a limit somewhere.”

“Yup, it’s gotten to the point that the SpaceX people chase an extra few percent performance by chilling their propellants so they can cram more into the size tanks they use. I don’t know what the limit is but we may be getting close.”

Newt’s back in. “Which is where strategy comes in, Vinnie. Up to now we’re mostly using a ballistic strategy to get to off-Earth destinations, treating the vehicle like a projectile that gets all its momentum at the beginning of the trip. But there’s really three phases to the trip, right? You climb out of a gravity well, you travel to your target, and maybe you make a controlled landing you hope. With the ballistic strategy you burn your fuel in phase one while you’re getting yourself into a transfer orbit. Then you coast on momentum through phase two.”

“You got a better strategy?”

“In some ways, yeah. How about applying continuous acceleration throughout phase two instead of just coasting? The Dawn spacecraft, for example, was rocket-launched out of Earth’s gravity well but used a xenon-ion engine in continuous-burn mode to get to Mars and then on to Vesta and Ceres. Worked just fine.”

“But they’re such low-thrust –“

“Hey, Vinnie, taking a long time to build up speed’s no problem when you’re on a long trip anyway. Dawn‘s motor averaged 1.8 kilometer per second of delta-v — that works out to … about 4,000 miles per hour of increased speed for every hour you keep the motor running. Adds up.”

“OK, I’ll give you the ion motor’s more efficient than a chemical system, but still, you need that xenon reaction mass to get your delta-v. You still gotta boost it up out of the well. All you’re doing with that strategy is extend the limit.”

Al dives back in. “That’s the beauty of Lightsail, guys. No delta-v at all. Just put it up there and light-pressure from the Sun provides the energy. Look, I got this slick video that shows how it works.”

Video courtesy of The Planetary Society.

~~ Rich Olcott

Red Velvet with Icing

“So Jupiter’s white stripes are huge updrafts of ammonia snow and its dark stripes are weird chemicals we only see when downdrafted ammonia snow evaporates. Fine, but how does that account for my buddy the Great Red Spot? Have another lemon scone.”

“Thanks, Al, don’t mind if I do. Well, those ideas only sort-of account for Spot. The bad news is that they may not have to for much longer.”

“Huh? Why not?”

“Because it seems to be going away.”

“Hey, Sy, don’t mess with me. You know it’s been there for 400 years, why should it go away now?”

“I don’t know anything of the kind. Sure, the early telescope users saw a spot 350 years ago but there’s reason to think that it wasn’t in the same location as your buddy. Then there was a century-long gap when no-one recorded seeing anything special on Jupiter. Without good evidence either way, I think it’s entirely possible we’ve had two different spots. Anyway, the new one has been shrinking for the past 150 years.”

“The big hole must be filling in, then.”

“What hole?”

Juno GRS image, NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt

“The Spot. If the dark-colored stripes are what we see when the bright ammonia ice evaporates, then the Spot’s gotta be a hole.”

“A reasonable conclusion from what we’ve said so far, but the Juno orbiter has given us more information. The Spot actually reaches 500 miles further up than the surrounding cloud tops.”

“But higher-up means colder, right? How come we don’t see the white snow?”

“That higher-is-colder rule does apply within Jupiter’s weather layer, mostly, but the Spot’s different. There seems to be a LOT of heat pouring straight up out of it, enough to warm the overlying atmosphere by several hundred degrees compared to the planetary average. That suppresses the ammonia ice, lifts whatever makes the red color and may even promote chemical reactions to make more.”

“But Sy, even I know heat spreads out. You’ve just described something that acts like a searchlight. How could it work like that?”

“Here’s one hypothesis. You’ve got your sound system here rigged up so the back of the shop is quiet, right? How’d you do that?”

“Oh, I bought a couple of directional speakers. They’re deeper than the regular kind and they’ve got this parabolic shape. I aimed them up here to the front where the traffic is. Work pretty good, don’t they?”

“Yes, indeed, and I’m grateful for that. See, they focus sound energy just like you can focus light. Now, to us the Spot just looks like an oval. But it’s probably the big end of a deep cone, spinning like mad and turning turbulent wind energy into white noise that’s focused out like one of your speakers. Wouldn’t that do the trick?”

“Like a huge trombone. Yeah, I suppose, but what keeps the cone cone-shaped?”

“The same thing that keeps it spinning — it’s trapped between two currents that are zipping along in opposite directions. The Spot’s northern boundary is the fastest westbound windstream on the planet. Its southern boundary is an eastbound windstream. The Spot’s trapped between two bands screaming past each other at the speed of sound.”

“Wow. Sounds violent.”

“Incredibly violent, much more than Earth hurricanes. At a hurricane’s eye-wall the wind speeds generally peak below 200 miles per hour. The Great Red Spot’s outermost winds that we can see are 50 miles per hour faster but those triangular regions just east and west must be far worse. When I think about adding in the updrafts and downdrafts I just shudder.”

“Does that have anything to do with the shrinking you told me about?”

“Almost certainly — we simply don’t have enough data to tell. But the new news is that your buddy’s uncorked a fresh shrinkage mode. Since the mid-1800s it’s been contracting along the east-west line, getting more circular. Now it seems to be flaking, too. Big, continent-size regions break away and mix into the dark belt above it. Meanwhile, the white equatorial zone is getting darker, sort of a yellow-green-orange mix.”

GRS image courtesy of Sharin Ahmad

“Yucky-colored. Does that mean the Spot’s draining into it?”

“Who knows? We certainly don’t. Only time will tell.”

~~ Rich Olcott