Three Shades of Dark

The guy’s got class, I’ll give him that. Astronomer-in-training Jim and Physicist-in-training Newt met his challenges so Change-me Charlie amiably updates his sign.

But he’s not done. “If dark matter’s a thing, how’s it different from dark energy? Mass and energy are the same thing, right, so dark energy’s gotta be just another kind of dark matter. Maybe dark energy’s what happens when real matter that fell into a black hole gets squeezed so hard its energy turns inside out.”

Jim and Newt just look at each other. Even Cap’n Mike’s boggled. Someone has to start somewhere so I speak up. “You’re comparing apples, cabbages and fruitcake. Yeah, all three are food except maybe for fruitcake, but they’re grossly different. Same thing for black holes, dark matter and dark energy — we can’t see any of them directly but they’re grossly different.”

EHT's image of the black hole at the center of the Messier 87 galaxy
Black hole and accretion disk, image by the Event Horizon Telescope Collaboration

Vinnie’s been listening off to one side but black holes are one of his hobbies. “A black hole’s dark ’cause its singularity’s buried inside its event horizon. Whatever’s outside and somehow gets past the horizon is doomed to fall towards the singularity inside. The singularity itself might be burn-your-eyes bright but who knows, ’cause the photons’re trapped. The accretion disk is really the only lit-up thing showing in that new EHT picture. The black in the middle is the shadow of the horizon, not the hole.”

Jim picks up the tale. “Dark matter’s dark because it doesn’t care about electromagnetism and vice-versa. Light’s an electromagnetic wave — it starts when a charged particle wobbles and it finishes by wobbling another charged particle. Normal matter’s all charged particles — negative electrons and positive nuclei — so normal matter and light have a lot to say to each other. Dark matter, whatever it is, doesn’t have electrical charges so it doesn’t do light at all.”

“Couldn’t a black hole have dark matter in it?”

“From what little we know about dark matter or the inside of a black hole, I see no reason it couldn’t.”

“How about normal matter falls in and the squeezing cooks it, mashes the pluses and minuses together and that’s what makes dark matter?”

“Great idea with a few things wrong with it. The dark matter we’ve found mostly exists in enormous spherical shells surrounding normal-matter galaxies. Your compressed dark matter is in the wrong place. It can’t escape from the black hole’s gravity field, much less get all the way out to those shells. Even if it did escape, decompression would let it revert to normal matter. Besides, we know from element abundance data that there can’t ever have been enough normal matter in the Universe to account for all the dark matter.”

Newt’s been waiting for a chance to cut in. “Dark energy’s dark, too, but it works in the opposite direction from the other two. Gravity from normal matter, black holes or otherwise, pulls things together. So does gravity from dark matter which is how we even learned that it exists. Dark energy’s negative pressure pulls things apart.”

“Could dark energy pull apart a black hole or dark matter?”

Big Cap’n Mike barges in. “Depends on if dark matter’s particles. Particles are localized and if they’re small enough they do quantum stuff. If that’s what dark matter is, dark energy can move the particles apart. My theory is dark matter’s just ripples across large volumes of space so dark energy can change how dark matter’s spread around but it can’t break it into pieces.”

Vinnie stands up for his hobby. “Dark energy can move black holes around, heck it moves galaxies, but like Sy showed us with Old Reliable it’s way too weak to break up black holes. They’re here for the duration.”

Newt pops him one. “The duration of what?”

“Like, forever.”

“Sorry, Hawking showed that black holes evaporate. Really slowly and the big ones slower than the little ones and the temperature of the Universe has to cool down a bit more before that starts to get significant, but not even the black holes are forever.”

“How long we got?”

“Something like 10106 years.”

“That won’t be dark energy’s fault, though.”

~~ Rich Olcott

Rhythm Method

A warm Summer day.  I’m under a shady tree by the lake, watching the geese and doing some math on Old Reliable.  Suddenly a text-message window opens up on its screen.  The header bar says 710-555-1701.  Old Reliable has never held a messaging app, that’s not what I use it for.  The whole thing doesn’t add up.  I type in, Hello?

Hello, Mr Moire.  Remember me?

Suddenly I do.  That sultry knowing stare, those pointed ears.  It’s been a yearHello, Ms Baird.  What can I do for you?

Another tip for you, Mr Moire.  One of my favorite star systems — the view as you approach it at near-lightspeed is so ... meaningful.  Your astronomers call it PSR J0337+1715.

So of course I head over to Al’s coffee shop after erasing everything but that astronomical designation.  As I hoped, Cathleen and a few of her astronomy students are on their mid-morning break.  Cathleen winces a little when she sees me coming.  “Now what, Sy?  You’re going to ask about blazars and neutrinos?”

I show her Old Reliable’s screen.  “Afraid not, Cathleen, I’ll have to save that for later.  I just got a message about this star system.  Recognize it?”

“Why, Sy, is that a clue or something?  And why is the lettering in orange?”

“Long story.  But what can you tell me about this star system?”

“Well, it’s probably one of the most compact multi-component systems we’re ever going to run across.  You know what compact objects are?”

“Sure.  When a star the size of our Sun exhausts most of its hydrogen fuel, gravity wins its battle against heat.  The star collapses down to a white dwarf, a Sun-full of mass packed into a planet-size body.  If the star’s a bit bigger it collapses even further, down to a neutron star just a few miles across.  The next step would be a black hole, but that’s not really a star, is it?”

“No, it’s not.  Jim, why not?”

“Because by definition a black hole doesn’t emit light.  A black hole’s accretion disk or polar jets might, but not the object itself.”

“Mm-hm.  Sy, your ‘object’ is actually three compact objects orbiting  around each other.  There’s a neutron star with a white dwarf going around it, and another white dwarf swinging around the pair of them.  Vivian, does that sound familiar?”

“That’s a three-body system, like the Moon going around the Earth and both going around the Sun.  Mmm, except really both white dwarfs would go around the neutron star because it’s heaviest and we can calculate the motion like we do the Solar System.”

“Not quite.  We can treat the Sun as motionless because it has 99% of the mass.  J0337+1715’s neutron star doesn’t dominate its system as much as the Sun does ours.  That outermost dwarf has 20% of its system’s mass.  Phil, what does that suggest to you?”

“It’d be like Pluto and Charon.  Charon’s got 10% of their combined mass and so Pluto and Charon both orbit a point 10% of the way out from Pluto.  From Earth we see Pluto wobbling side to side around that point.  So the neutron star must wobble around the point 20% outward towards the heavy dwarf.  Hey, star-wobble is how we find exoplanets.  Is that what this is about, Mr Moire?  Did someone measure its red-shift behavior?”PSR J0337+1715Cathleen saves me from answering.  “Not quite.  The study Sy’s chasing is actually a cute variation on red-shift measurements.  That ‘PSR‘ designation means the neutron star is a pulsar.  Those things emit electromagnetic radiation pulses with astounding precision, generally regular within a few dozen nanoseconds.  If we receive slowed-down pulses then the object’s going away; sped-up and it’s approaching, just like with red-shifting.  The researchers  derived orbital parameters for all three bodies from the between-pulse durations.  The heavy dwarf is 200 times further out than the light one, for instance.  Not an easy experiment, but it yielded an important result.”

My ears perk up.  “Which was…?”

“The gravitational force between the pulsar and each dwarf was within six parts per million of what Newton’s Laws prescribe.  That observation rules out whole classes of theories that tried to explain galaxies and galaxy clusters without invoking dark matter.”

Cool, huh?

Uh-huh.

~~ Rich Olcott

A Perspective on Gravity

“I got another question, Moire.”

“Of course you do, Mr Feder.”

“When someone’s far away they look smaller, right, and when someone’s standing near a black hole they look smaller, too.  How’s the black hole any different?”

“The short answer is, perspective depends on the distance between the object and you, but space compression depends on the distance between the object and the space-distorting mass.  The long answer’s more interesting.”

“And you’re gonna tell it to me, right?”

“Of course.  I never let a teachable moment pass by.  Remember the August eclipse?”

“Do I?  I was stuck in that traffic for hours.”

“How’s it work then?”

“The eclipse?  The Moon gets in front of the Sun and puts us in its shadow. ‘S weird how they’re both the same size so we can see the Sun’s corundum and protuberances.”

“Corona and prominences.  Is the Moon really the same size as the Sun?”

“Naw, I know better than that.  Like they said on TV, the Moon’s about ¼ the Earth’s width and the Sun’s about 100 times bigger than us.  It’s just they look the same size when they meet up.”

“So the diameter ratio is about 400-to-1.  Off the top of your head, do you know their distances from us?”

“Millions of miles, right?”

“Not so much, at least for the Moon.  It’s a bit less than ¼ of a million miles away.  The Sun’s a bit less than 100 million miles away.”

“I see where you’re going here — the distances are the same 400-to-1 ratio.”

“Bingo.  The Moon’s actual size is 400 times smaller than the Sun’s, but perspective reduces the Sun’s visual size by the same ratio and we can enjoy eclipses.  Let’s try another one.  To keep the arithmetic simple I’m going to call that almost-100-million-mile distance an Astronomical Unit.  OK?”

“No problemo.”

“Jupiter’s diameter is about 10% of the Sun’s, and Jupiter is about 5 AUs away from the Sun.  How far behind Jupiter would we have to stand to get a nice eclipse?”

“Oh, you’re making me work, too, huh?  OK, I gotta shrink the Sun by a factor of 10 to match the size of Jupiter so we gotta pull back from Jupiter by the same factor of 10 times its distance from the Sun … fifty of those AUs.”

“You got it.  And by the way, that 55 AU total is just outside the farthest point of Pluto’s orbit.  It took the New Horizons spacecraft nine years to get there.  Anyhow, perspective’s all about simple ratios and proportions, straight lines all the way.  So … on to space compression, which isn’t.”

“We’re not going to do calculus, are we?”

“Nope, just some algebra.  And I’m going to simplify things just a little by saying that our black hole doesn’t spin and has no charge, and the object we’re watching, say a survey robot, is small relative to the black hole’s diameter.  Of course, it’s also completely outside the event horizon or else we couldn’t see it.  With me?”

“I suppose.”

“OK, given all that, suppose the robot’s as-built height is h and it’s a distance r away from the geometric center of an event horizon’s sphere.  The radius of the sphere is rs.  Looking down from our spaceship we’d see the robot’s height h’ as something smaller than h by a factor that depends on r.  There’s a couple of different ways to write the factor.  The formula I like best is h’=h√[(r-rs)/r].”

“Hey, (r-rs) inside the brackets is the robot’s distance to the event horizon.”

“Well-spotted, Mr Feder.  We’re dividing that length by the distance from the event horizon’s geometric center.  If the robot’s far away so that r>>rs, then (r-rs)/r is essentially 1.0 and h’=h.  We and the robot would agree on its height.  But as the robot closes in, that ratio really gets small.  In our frame the robot’s shrinking even though in its frame its height doesn’t change.”

“We’d see it getting smaller because of perspective, too, right?”

“Sure, but toward the end relativity shrinks the robot even faster than perspective does.”

“Poor robot.”

~~ Rich Olcott

  • Thanks to Carol, who inspired this post by asking Mr Feder’s question but in more precise form.

Shopping The Old Curiosity

“Still got questions, Moire.”

“This’ll be your last shot this year, Mr Feder.  What’s the question?”

“They say a black hole absorbs all the light that falls on it. But the theory of blackbody radiation says a perfect absorber is also a perfect radiator. Emission should be an exact opposite flow to the incoming flow in every direction. Wouldn’t a black hole be shiny like a ball bearing?”Black hole as ball bearing 1
“A perfectly good question, but with crucial imperfections. Let’s start with the definition of a perfect absorber — it’s an object that doesn’t transmit or reflect any light. Super-black, in other words. So by definition it can’t be a mirror.”

“OK, maybe not a mirror, but the black hole has to send out some kind of exact opposite light to balance the arriving light.”

“Yes, but not in the way you think. Blackbody theory does include the assumption that the object is in equilibrium, your ‘exact opposite flow.’ The object must indeed send out as much energy as it receives, otherwise it’d heat up or cool down. But the outbound light doesn’t necessarily have to be at the same frequencies as the inbound light had. In fact, it almost never will.”

“How come not?”

“Because absorption and emission are two different processes and they play by different rules. If we’re including black holes in the discussion there are four different processes. No, five.  Maybe six.”

“I’m listening.”

“Good. Blackbody first. When a photon is absorbed by regular matter, it affects the behavior of some electron in there. Maybe it starts spending more time in a different part of the molecule, maybe it moves faster — one way or another, the electron configuration changes and that pulls the atomic nuclei away from where they were and the object’s atoms wobble differently. So the photon raises the object’s internal kinetic energy, which means raising its temperature, and we’ve got energy absorption, OK?”

“Yeah, and…?”

“At some later time, to keep things in equilibrium that additional energy has to be gotten rid of. But you can’t just paint one bit of energy red, say it’s special and follow it until it’s emitted. The whole molecule or crystal or whatever has excess energy as the result of all the incoming photons. When the total gets high enough, something has to give.  The object emits some photons to get rid of some of the excess. The only thing you can say about the outbound photons is that they generally have a lower energy than the incoming ones.”

“Why’s that?”

“Think of a bucket that’s brim-full and you’re dumping in cupfuls of water. Unless you’re pouring slowly and carefully, the dribbles escaping over the bucket’s rim will generally be many small amounts sloshing out more often than those cupfuls come in.  For light that’s fluorescence.”

“I suppose. What about the black hole?”

“The problem with a black hole is the mystery of what’s inside its event horizon. It probably doesn’t contain matter in the form of electrons and nuclei but we don’t know. There are fundamental reasons why information about what’s inside can’t leak out to us. All we can say is that when a light wave encounters a black hole, it’s trapped by the intense gravity field and its energy increments the black hole’s mass.  The mechanism … who knows?”

“Like I said, it gets absorbed. And gets emitted as Hawking radiation.”

“Sorry, that’s exactly what doesn’t happen. Hawking radiation arises from a different pair of processes. Process 1 generates pairs of virtual particles, which could be photons, electrons or something heavier. That happens at a chaotic but steady rate throughout the Universe.  Usually the particle pairs get back together and annihilate.  However, right next to the black hole’s event horizon there’s Process 2, in which one member of a virtual pair flies inward and the other member flies outward as a piece of Hawking radiation. Neither process even notices incoming photons. That’s not mirroring or even fluorescence.”

“Phooey, it was a neat idea.”

“That it was, but facts.”

~~ Rich Olcott

  • Thanks to lifeisthermal for inspiring this post.
  • Thus endeth a full year of Sy Moire stories.  I hope you enjoyed them.  Here’s to a new year and new ideas for all.

Taming The Elephant

Suddenly they were all on the attack.  Anne got in the first lick.  “C’mon, Sy, you’re comparing apples and orange peel.  Your hydrogen sphere would be on the inside of the black hole’s event horizon, and Jeremy’s virtual particles are on the outside.”

[If you’ve not read my prior post, do that now and this’ll make more sense.  Go ahead, I’ll wait here.]white satin and 5 elephantsJennie’s turn — “Didn’t the chemists define away a whole lot of entropy when they said that pure elements have zero entropy at absolute zero temperature?”

Then Vinnie took a shot.  “If you’re counting maybe-particles per square whatever for the surface, shouldn’t you oughta count maybe-atoms or something per cubic whatever for the sphere?”

Jeremy posed the deepest questions. “But Mr Moire, aren’t those two different definitions for entropy?  What does heat capacity have to do with counting, anyhow?”

Al brought over mugs of coffee and a plate of scones.  “This I gotta hear.”

“Whew, but this is good ’cause we’re getting down to the nub.  First to Jennie’s point — Under the covers, Hawking’s evaluation is just as arbitrary as the chemists’.  Vinnie’s ‘whatever’ is the Planck length, lP=1.616×10-35 meter.  It’s the square root of such a simple combination of fundamental constants that many physicists think that lP2=2.611×10-70 m², is the ‘quantum of area.’  But that’s just a convenient assumption with no supporting evidence behind it.”

“Ah, so Hawking’s ABH=4πrs2 and SBH=ABH/4 formulation with rs measured in Planck-lengths, just counts the number of area-quanta on the event horizon’s surface.”

“Exactly, Jennie.  If there really is a least possible area, which a lot of physicists doubt, and if its size doesn’t happen to equal lP2, then the black hole entropy gets recalculated to match.”

“So what’s wrong with cubic those-things?”

“Nothing, Vinnie, except that volumes measured in lP3 don’t apply to a black hole because the interior’s really four-dimensional with time scrambled into the distance formulas.  Besides, Hawking proved that the entropy varies with half-diameter squared, not half-diameter cubed.”

“But you could still measure your hydrogen sphere with them and that’d get rid of that 1033 discrepancy between the two entropies.”

“Not really, Vinnie.  Old Reliable calculated solid hydrogen’s entropy for a certain mass, not a volume.”

“Hawking can make his arbitrary choice, Sy, he’s Hawking, but that doesn’t let the chemists off the scaffold.  How did they get away with arbitrarily defining a zero for entropy?”

“Because it worked, Jennie.  They were only concerned with changes — the difference between a system’s state at the end of a process, versus its state at the beginning.  It was only the entropy difference that counted, not its absolute value.”

“Hey, like altitude differences in potential energy.”

“Absolutely, Vinnie, and that’ll be important when we get to Jeremy’s question.  So, Jennie, if you’re only interested in chemical reactions and if it’s still in the 19th Century and the world doesn’t know about isotopes yet, is there a problem with defining zero entropy to be at a convenient set of conditions?”

“Well, but Vinnie’s Second Law says you can never get down to absolute zero so that’s not convenient.”

“Good point, but the Ideal Gas Law and other tools let scientists extrapolate experimentally measured properties down to extremely low temperatures.  In fact, the very notion of absolute zero temperature came from experiments where the volume of a  hydrogen or helium gas sample appears to decrease linearly towards zero at that temperature, at least until the sample condenses to a liquid.  With properly calibrated thermometers, physical chemists knocked themselves out measuring heat capacities and entropies at different temperatures for every substance they could lay hands on.”

“What about isotopes, Mr Moire?  Isn’t chlorine’s atomic weight something-and-a-half so there’s gotta be several of kinds of chlorine atoms so any sample you’ve got is a mixture and that’s random and that has to have a non-zero entropy even at absolute zero.”

“It’s 35.4, two stable isotopes, Jeremy, but we know how to account for entropy of mixing and anyway, the isotope mix rarely changes in chemical processes.”

“But my apples and orange peels, Sy — what does the entropy elephant do about them?”

~~ Rich Olcott

Rockfall

<continued>  The coffee shop crowd had gotten rowdy in response to my sloppy physics, but everyone hushed when I reached for my holster and drew out Old Reliable.  All had heard of it, some had seen it in action — a maxed-out tablet with customized math apps on speed-dial.

“Let’s take this nice and slow.  Suppose we’ve got an non-charged, non-spinning solar-mass black hole.  Inside its event horizon the radius gets weird but let’s pretend we can treat the object like a simple sphere.  The horizon’s half-diameter, we’ll call it the radius, is rs=2G·M/c²G is Newton’s gravitational constant, M is the object’s mass and c is the speed of light.  Old Reliable says … about 3 kilometers.  Question is, what happens when we throw a rock in there?  To keep things simple, I’m going to model dropping the rock gentle-like, dead-center and with negligible velocity relative to the hole, OK?”

<crickets>

“Say the rock has the mass of the Earth, almost exactly 3×10-6 the Sun’s mass.  The gravitational potential energy released when the rock hits the event horizon from far, far away would be E=G·M·m/rs, which works out to be … 2.6874×1041 joules.  What happens to that energy?”falling rock and black hole

rs depends on mass, Mr Moire, so the object will expand.  Won’t that push on what’s around it?”

“You’re thinking it’d act like a spherical piston, Jeremy, pushing out in all directions?”

“Yeah, sorta.”

“After we throw in a rock with mass m, the radius expands from rs to rp=2G·(M+m)/c².  I set m to Earth’s mass and Old Reliable says the new radius is … 3.000009 kilometers.  Granted the event horizon is only an abstract math construct, but suppose it’s a solid membrane like a balloon’s skin.  When it expands by that 9 millimeters, what’s there to push against?  The accretion disk?  Those rings might look solid but they’re probably like Saturn’s rings — a collection of independent chunks of stuff with an occasional gas molecule in-between.  Their chaotic orbits don’t have a hard-edged boundary and wouldn’t notice the 9-millimeter difference.  Inward of the disk you’ve got vacuum.  A piston pushing on vacuum expends zero energy.  With no pressure-volume work getting done that can’t be where the infall energy goes.”

“How about lift-a-weight work against the hole’s own gravity?”

“That’s a possibility, Vinnie.  Some physicists maintain that a black hole’s mass is concentrated in a shell right at the event horizon.  Old Reliable here can figure how much energy it would take to expand the shell that extra 9 millimeters.  Imagine that simple Newtonian physics applies — no relativistic weirdness.  Newton proved that a uniform spherical shell’s gravitational attraction is the same as what you’d get from having the same mass sitting at the shell’s geometric center.  The gravitational pull the shell exerts on itself originally was E=G·M²/rs.  Lifting the new mass from rs to rp will cost ΔE=G·(M+m)²/r– G·M²/rs.  When I plug in the numbers…  That’s interesting.”

Vinnie’s known me long enough to realize “That’s interesting” meant “Whoa, I certainly didn’t expect THAT!

“So what didja expect and whatcha got?”

“What I expected was that lift-it-up work would also be just a small fraction of the infall energy and the rest would go to heat.  What I got for ΔE here was 2.6874×1041 joules, exactly 100% of the input.  I wonder what happens if I use a bigger planet.  Gimme a second … OK, let’s plot a range …  How ’bout that, it’s linear!”ep-es

“Alright, show us!”

All the infall energy goes to move the shell’s combined mass outward to match the expanded size of the event horizon.  I’m amazed that such a simple classical model produces a reasonable result.”

“Like Miss Plenum says, Mr Moire, sometimes the best science comes from surprises.”

“I wouldn’t show it around, Jeremy, except that it’s consistent with Hawking’s quantum-physics result.”

“How’s that?”

“Remember, he showed that a black hole’s temperature varies as 1/M.  We know that temperature is ΔE/ΔS, where the entropy change ΔS varies as .  We’ve just found that ΔE varies as M.  The ΔE/ΔS ratio varies as M/M²=1/M, just like Hawking said.”

Then Jennie got into the conversation.

~~ Rich Olcott

Red Harvest

<continued> Al’s coffee shop was filling up as word got around about Anne in her white satin.  I saw a few selfie-takers in the physics crowd surreptitiously edge over to get her into their background.  She was busy thinking so she didn’t notice.  “The entropy-elephant picture is starting to come together, Sy.  We started out with entropy measuring accumulated heat capacity in a steam engine.”

“That’s where Carnot started, yes.”

“But when Jeremy threw that hot rock into the black hole” <several in the astronomy crew threw startled looks at Jeremy>, “its heat energy added to the black hole’s mass, but it should have added to the black hole’s entropy, too.  ‘Cause of Vinnie’s Second Law.”white satin and black hole 3

Vinnie looked up.  “Ain’t my Second Law, it’s thermodynamics’ Second Law.  Besides, my version was ‘energy’s always wasted.’  Sy’s the one who turned that into ‘entropy always increases.'”

“So anyway, black holes can’t have zero entropy like people used to think.  But if entropy also has to do with counting possibilities, than how does that apply to black holes?  They have only one state.”

“That’s where Hawking got subtle.  Jeremy, we’ve talked about how the black hole’s event horizon is a mathematical abstraction, infinitely thin and perfectly smooth and all that.”

“Yessir.”

“Hawking moved one step away from that abstraction.  In essence he said the  event horizon is surrounded by a thin shell of virtual particles.  Remember them, Jeremy?”

“Uh-huh, that was on my quest to the event horizon.  Pairs of equal and opposite virtual particles randomly appear and disappear everywhere in space and because they appear together they’re entangled and if one of them dips into the event horizon then it doesn’t annihilate its twin which — Oh!  Random!  So what’s inside the event horizon may have only one state, so far as we know, but right outside the horizon any point may or may not be hosting, can I call it an orphan particle?  I’ll bet that uncertainty give rise to the entropy, right?”

<finger-snaps of approval from the physics side of the room>

“Well done, Jeremy!  ‘Orphan’ isn’t the conventional term but it gets the idea across.”

“Wait, Sy.  You mentioned that surface area and entropy go together and now I see why.  The larger the area, the more room there is for those poor orphans.  When Jeremy’s rock hit the event horizon and increased the black hole’s mass, did the surface area increase enough to allow for the additional entropy?” <more finger-snapping>

“Sure did, Anne.  According to Hawking’s calculation, it grew by exactly the right amount.  Mass and area both grow as the square of the diameter.”

“How come not the radius?”

“Well , Vinnie, the word ‘radius‘ is tricky when you’re discussing black holes.  The event horizon is spherical and has a definite diameter — you could measure it from the outside.  But the sphere’s radius extends down to the singularity and is kind of infinite and isn’t even strictly speaking a distance.  Space-time is twisted in there, remember, and that radial vector is mostly time near its far end.  On the other hand, you could use ‘radius‘ to mean ‘half the diameter‘ and you’d be good for calculating effects outside the event horizon.”

“OK, that’s the entropy-area connection, but how does temperature tie in with surface gravity?”

“They’re both inversely dependent on the black hole’s mass.  Let’s take surface gravity first, and here when I say ‘r‘ I’m talking ‘half-diameter,‘ OK?”

“Sure.”

“Good.  Newton taught us that an object with mass M has a gravitational attraction proportional to M/r².  That still holds if you’re not inside the event horizon.  Now, the event horizon’s r is also proportional to the object’s mass so you’ve got M/M² which comes to 1/M.  With me?”

“Yeah.”

“Hawking used quantum physics to figure the temperature thing, but here’s a sloppy short-cut.  Anne, remember how we said that entropy is approximately heat capacity divided by temperature?”

“Mm-hmm.”

“The shell’s energy is mostly heat and proportional to M.  We’ve seen the shell’s entropy is proportional to .  The temperature is heat divided by entropy.  That’s proportional to M/M² which is the same 1/M as surface gravity.” <boos from all sides>. “Hey, I said it was sloppy.”

~~ Rich Olcott

Rockin’ Round The Elephant

<continued…>  “That’s what who said?  And why’d he say that?”

“That’s what Hawking said, Al.  He’s the guy who first applied thermodynamic analysis to black holes.  Anyone happen to know the Three Laws of Thermodynamics?”

Vinnie pipes up from his table by the coffee shop door.  “You can’t win.  You can’t even break even.  But you’ll never go broke.”

“Well, that’s one version, Vinnie, but keep in mind all three of those focus on energy.  The First Law is Conservation of Energy—no process can create or destroy energy, only  transform it, so you can’t come out ahead.  The Second Law is really about entropy—”

“Ooo, the elephant!”white satin and black hole 2

“Right, Anne.  You usually see the Second Law stated in terms of energy efficiency—no process can convert energy to another form without wasting some of it. No breaking even.  But an equivalent statement of that same law is that any process must increase the entropy of the Universe.”

“The elephant always gets bigger.”

“Absolutely.  When Bekenstein and Hawking thought about what would happen if a black hole absorbed more matter, worst case another black hole, they realized that the black hole’s surface area had to follow the same ‘Never decrease‘ rule.”

“Oh, that Hawking!  Hawking radiation Hawking!  The part I didn’t understand, well one of the parts, in that “Black Holes” Wikipedia article!  It had to do with entangled particles, didn’t it?”

“Just caught up with us, eh, Jeremy?  Yes, Stephen Hawking.  He and Jacob Bekenstein found parallels between what we can know about black holes on the one hand and thermodynamic quantities on the other.  Surface area and entropy, like we said, and a black hole’s mass acts mathematically like energy in thermodynamics.  The correlations were provocative ”

“Mmm, provocative.”

“You like that word, eh, Anne?  Physicists knew that Bekenstein and Hawking had a good analogy going, but was there a tight linkage in there somewhere?  It seemed doubtful.”

“Nothin’ to count.”

“Wow, Vinnie.  You’ve been reading my posts?”

“Sure, and I remember the no-hair thing.  If the only things the Universe can know about a black hole are its mass, spin and charge, then there’s nothing to figure probabilities on.”

“Exactly.  The logic sequence went, ‘Entropy is proportional to the logarithm of state count, there’s only one state, log(1) equals zero,  so the entropy is zero.’  But that breaks the Third Law.  Vinnie’s energy-oriented Third Law says that no object can cool to absolute zero temperature.  But an equivalent statement is that no object can have zero entropy.”

“So there’s something wrong with black hole theory, huh?”

“Which is where our guys started, Vinnie.  Being physicists, they said, ‘Suppose you were to throw an object into a black hole.  What would change?’

“Its mass, for one.”

“For sure, Jeremy.  Anything else?”

“It might not change the spin, if you throw right.”

“Spoken like a trained baseball pitcher.  Turns out its mass governs pretty much everything about a black hole, including its temperature but not spin or charge.  Once you know the mass you can calculate its entropy, diameter, surface area, surface gravity, maximum spin, all of that.  Weird, though, you can’t easily calculate its volume or density — spatial distortion gets in the way.”

“So what happens to all those things when the mass increases?”

“As you might expect, they change.  What’s interesting is how each of them change and how they’re linked together.  Temperature, for instance, is inversely proportional to the mass and vice-versa.  Suppose, Jeremy, that you threw two big rocks, both the same size, into a black hole.  The first rock is at room temperature and the other’s a really hot one, say at a million degrees.   What would each do?”

“The first one adds mass so from what you said it’d drop the temperature.  The second one has the same mass, so I don’t see, wait, temperature’s average kinetic energy so the hot rock has more energy than the other one and Einstein says that energy and mass are the same thing so the black hole gets more mass from the hot rock than from the cold one so its temperature goes down … more?  Really?”

“Yup.  Weird, huh?”

“How’s that work?”

“That’s what they asked.”

~~ Rich Olcott

Gozer, The Stay Puft Black Hole

We’re downstairs at Eddie’s Pizza.  Vinnie orders his usual pepperoni.  In memory of Sam Panapoulos, I order a Hawaiian.  Then we’re back to talking black holes.

“I been thinking, Sy.  These regular-size black holes, the ones close to the Sun’s mass, we got a lot of ’em?”

“I’ve seen an estimate of 50,000 in the Milky Way Galaxy so you could say they’re common.  That’s one way to look at it.  The other way is to compare 50,000 with the 250 billion stars in the galaxy.  One out of 5,000,000 is a black hole, so they’re rare.  Your choice, Vinnie.”

“But all three confirmed LIGO signals were the next bigger size range, maybe 10 to 30 solar masses; two of ’em hittin’ each other and they’ve all been more than a billion lightyears away.  How come LIGO doesn’t see the little guys that are close to us?”

“Darn good question.  Lessee… OK, I’ve got several possibilities.  Maybe the close-in little guys do collide, but the signal’s too weak for us to detect.  But we can put numbers to that.  In each LIGO event we’ve seen, the collision released about 10% of their 40-to-60-Sun total mass-energy in the form of gravitational waves.  LIGO’s just barely able to detect that, right?”

“They were excited they could, yeah.”

“So if a pair of little-guy black holes collided they’d release about 10% of two makes 0.2 solar masses worth of energy.  That’d be way below our detection threshold if the collision is a billion light-years away.  But we’re asking about collisions inside the Milky Way.  Suppose the collision happened near the center, about 26,000 lightyears from us.  Signal strength grows as the square of how close the source is, so multiply that ‘too weak to detect’ wave by (1 billion/26000)² =15×1012, fifteen quadrillion.  LIGO’d be deafened by a signal that strong.”

“But LIGO’s OK, so we can rule that out.  Next guess.”

“Maybe the signal’s coming in at the wrong frequency.  The equations say that just before a big-guy collision the two objects circle each other hundreds of times a second.  That frequency is in the lower portion of the 20-20,000 cycles-per-second human audio range.  LIGO’s instrumentation was tuned to pick up gravitational waves between 30 and 7,000.  Sure enough, LIGO recorded chirps that were heard around the world.”

“So what frequency should LIGO be tuned to to pick up little-guy collisions?”

“We can put numbers to that, too.  Physics says that at a given orbit radius, revolution frequency varies inversely with the square root of the mass.   The big-guy collisions generated chirps between 100 and 400 cps.  Little guy frequencies would be f2/f50=√(50/2)=5 times higher, between 500 and 2000 cps.  Well within LIGO’s range.”

“We don’t hear those tweets so that idea’s out, too.  What’s your third try?”

“Actually I like this one best.  Maybe the little guys just don’t collide.”

“Why would you like that one?”

“Because maybe it’s telling us something.  It could be that they don’t collide simply because they’re surrounded by so many other stars that they never meet up.  But it also could be that binary black holes, the ones that are fated to collide with each other, are the only ones that can grow beyond 10 solar masses.  And I’ve got a guess about how that could happen.”

“Alright, give.”

“Let’s start with how to grow a big guy.  Upstairs we talked about making little guys.  When a star’s core uses up one fuel, like hydrogen, there’s an explosive collapse that sets off a hotter fuel, like helium, until you get to iron which doesn’t play.  At each step, unburnt fuel outside the core gets blown away.  If the final core’s mass is greater than about three times the Sun’s you wind up with a black hole.  But how about if you don’t run out of fuel?”

“How can that happen?  The star’s got what it’s got.”Binary protoBHs

“Not if it’s got close neighbors that also expel unburnt fuel in their own burn-collapse cycles.  Grab their cast-off fuel and your core can get heavier before you do your next collapse.  Not impossible in a binary or cluster where all the stars are roughly the same age.  Visualize kids tossing marshmallows into each other’s mouths.”

“Or paying for each other’s pizzas.  And it’s your turn.”

~~ Rich Olcott

Prelude to A Waltz

An excited knock, but one I recognize.  In comes Vinnie, waving his fresh copy of The New York Times.

LIGO‘s done it again!  They’ve seen another black hole collision!”

“Yeah, Vinnie, I’ve read the Abbott-and-a-thousand paper.  Three catastrophic collisions detected in less than two years.  The Universe is starting to look like a pretty busy place, isn’t it?”

“And they all involve really big black holes — 15, 20, even 30 times heavier than the Sun.  Didn’t you once say black holes that size couldn’t exist?”

“Well, apparently they do.  Of course the physicists are busily theorizing how that can happen.  What do you know about how stars work, Vinnie?”

“They get energy from fusing hydrogen atoms to make helium atoms.”

“So far, so good, but then what happens when the hydrogen’s used up?”

“They go out, I guess.”

“Oh, it’s a lot more exciting than that. Does the fusion reaction happen everywhere in the star?”

“I woulda said, ‘Yes,’ but since you’re asking I’ll bet the answer is,  ‘No.'”

“Properly suspicious, and you’re right.  It takes a lot of heat and pressure to force a couple of positive nuclei close enough to fuse together despite charge repulsion.  Pressures near the outer layers are way too low for that.  For our Sun, for instance, you need to be 70% of the way to the center before fusion really kicks in.  So you’ve got radiation pressure from the fusion pushing everything outward and gravity pulling everything toward the center.  But what’s down there?  Here’s a hint — hydrogen’s atomic weight is 1, helium’s is 4.”

“You’re telling me that the heavier atoms sink to the center?”

“I am.”

“So the center builds up a lot of helium.  Oh, wait, helium atoms got two protons in there so it’s got to be harder to mash them together than mashing hydrogens, right?”Star zones
“And that’s why that region’s marked ash zone in this sketch.  Wherever conditions are right for hydrogen fusion, helium’s basically inert.  Like ash in a campfire it just sinks out of the way.  Now the fire goes out.  What would you expect next?”

“Radiation pressure’s gone but gravity’s still there … everything must slam inwards.”

Slam is an excellent word choice, even though the star’s radius is measured in thousands of miles.  What’s the slam going to do to the helium atoms?”

“Is it strong enough to start helium fusion?”

“That’s where I’m going.  The star starts fusing helium at its core.  That’s a much hotter reaction than hydrogen’s.  When convective zone hydrogen that’s still falling inward meets fresh outbound radiation pressure, most of the hydrogen gets blasted away.”

“Fusing helium – that’s a new one on me.  What’s that make?”

“Carbon and oxygen, mostly.  They’re as inert during the helium-fusion phase as helium was when hydrogen was doing its thing.”

“So will the star do another nova cycle?”

“Maybe.  Depends on the core’s mass.  Its gravity may not be intense enough to fuse helium’s ashes.  In that case you wind up with a white dwarf, which just sits there cooling off for billions of years.  That’s what the Sun will do.”

“But suppose the star’s heavy enough to burn those ashes…”

“The core’s fresh light-up blows away infalling convective zone material.  The core makes even heavier atoms.  Given enough fuel, the sequence repeats, cycling faster and faster until it gets to iron.  At each stage the star has less mass than before its explosion but the residual core is more dense and its gravity field is more intense.  The process may stop at a neutron star, but if there was enough fuel to start with, you get a black hole.”

“That’s the theory that accounts for the Sun-size black holes?”

“Pretty much.  I’ve left out lots of details, of course.  But it doesn’t account for black holes the size of 30 Suns — really big stars go supernova and throw away so much of their mass they miss the black-hole sweet spot and terminate as a neutron star or white dwarf.  That’s where the new LIGO observation comes in.  It may have clued us in on how those big guys happen.”

“That sketch looks like a pizza slice.”

“You’re thinking dinner, right?”

“Yeah, and it’s your turn to buy.”

~~ Rich Olcott