Moby Divergence

Stepping into Pizza Eddie’s I see Jeremy at his post behind the gelato stand, an impressively thick book in front of him.  “Hi, Jeremy, one chocolate-hazelnut combo, please.  What’re you reading there?”

“Hi, Mr Moire.  It’s Moby Dick, for English class.”

“Ah, one of my favorites.  Melville was a 19th-century techie, did for whaling what Tom Clancy did for submarines.”

“You’re here at just the right time, Mr Moire.  I’m reading the part where something called ‘the corpusants’ are making lights glow around the Pequod.  Sometimes he calls them lightning, but they don’t seem to come down from the sky like real lightning.  Umm, here it is, he says. ‘All the yard-arms were tipped with pallid fire, and touched at each tri-pointed lightning-rod-end with three tapering white flames, each of the three tall masts was silently burning in that sulphurous air, like three gigantic wax tapers before an altar.’  What’s that about?”St Elmos fire

“That glow is also called ‘St Elmo’s Fire‘ among other things.  It’s often associated with a lightning storm but it’s a completely different phenomenon.  Strictly speaking it’s a concentrated coronal discharge.”

“That doesn’t explain much, sir.”

“Take it one word at a time.  If you pump a lot of electrons into a confined space, they repel each other and sooner or later they’ll find ways to leak away.  That’s literally dis-charging.”

“How do you ‘pump electrons’?”

“Oh, lots of ways.  The ancient Greeks did it by rubbing amber with fur, Volta did it chemically with metals and acid,  Van de Graaff did it with a conveyor belt, Earth does it with winds that transport air between atmospheric layers.  You do it every time you shuffle across a carpet and get shocked when you put your finger near a water pipe or a light switch.”

“That only happens in the wintertime.”

“Actually, carpet-shuffle electron-pumping happens all the time.  In the summer you discharge as quickly as you gain charge because the air’s humidity gives the electrons an easy pathway away from you.  In the winter you’re better insulated and retain the charge until it’s too late.”

“Hm.  Next word.”

Corona, like ‘halo.’  A coronal discharge is the glow you see around an object that gets charged-up past a certain threshold.  In air the glow can be blue or purple, but you can get different colors from other gases.  Basically, the electric field is so intense that it overwhelms the electronic structure of the surrounding atoms and molecules.  The glow is electrons radiating as they return to their normal confined chaos after having been pulled into some stretched-out configuration.”

“But this picture of the corpusants has them just at the mast-heads and yard-arms, not all over the boat.”

“That’s where the ‘concentrated’ word come in.  I puzzled over that, too, when I first looked into the phenomenon.  Made no sense.”

“Yeah.  If the electrons are repelling each other they ought to spread out as much as possible.  So why do they seem pour out of the pointy parts?”

“That was a mystery until the 1880s when Heaviside cleaned up Maxwell’s original set of equations.  The clarified math showed that the key is the electric field’s spread-out-ness, technically known as divergence.”

DivergenceWith my finger I draw in the frost on his gelato cabinet.  “Imagine this is a brass ball, except I’ve pulled one side of it out to a cone.  Someone’s loaded it up with extra electrons so it’s carrying a high negative charge.”

“The electrons have spread themselves evenly over the metal surface, right, including at the pointy part?”

“Yup, that’s why I’m doing my best to make all these electric field arrows the same distance apart at their base.  They’re also supposed to be perpendicular to the surface.  What part of that field will put the most rip-apart stress on the local air molecules?”

“Oh, at the tip, where the field spreads out most abruptly.”

“Bingo.  What makes the glow isn’t the average field strength, it’s how drastically the field varies from one side of a molecule to the other.  That’s what rips them apart.  And you get the greatest divergence at the pointy parts like at the Pequod’s mast-head.”

“And Ahab’s harpoon.”

~~ Rich Olcott

Taming The Elephant

Suddenly they were all on the attack.  Anne got in the first lick.  “C’mon, Sy, you’re comparing apples and orange peel.  Your hydrogen sphere would be on the inside of the black hole’s event horizon, and Jeremy’s virtual particles are on the outside.”

[If you’ve not read my prior post, do that now and this’ll make more sense.  Go ahead, I’ll wait here.]white satin and 5 elephantsJennie’s turn — “Didn’t the chemists define away a whole lot of entropy when they said that pure elements have zero entropy at absolute zero temperature?”

Then Vinnie took a shot.  “If you’re counting maybe-particles per square whatever for the surface, shouldn’t you oughta count maybe-atoms or something per cubic whatever for the sphere?”

Jeremy posed the deepest questions. “But Mr Moire, aren’t those two different definitions for entropy?  What does heat capacity have to do with counting, anyhow?”

Al brought over mugs of coffee and a plate of scones.  “This I gotta hear.”

“Whew, but this is good ’cause we’re getting down to the nub.  First to Jennie’s point — Under the covers, Hawking’s evaluation is just as arbitrary as the chemists’.  Vinnie’s ‘whatever’ is the Planck length, lP=1.616×10-35 meter.  It’s the square root of such a simple combination of fundamental constants that many physicists think that lP2=2.611×10-70 m², is the ‘quantum of area.’  But that’s just a convenient assumption with no supporting evidence behind it.”

“Ah, so Hawking’s ABH=4πrs2 and SBH=ABH/4 formulation with rs measured in Planck-lengths, just counts the number of area-quanta on the event horizon’s surface.”

“Exactly, Jennie.  If there really is a least possible area, which a lot of physicists doubt, and if its size doesn’t happen to equal lP2, then the black hole entropy gets recalculated to match.”

“So what’s wrong with cubic those-things?”

“Nothing, Vinnie, except that volumes measured in lP3 don’t apply to a black hole because the interior’s really four-dimensional with time scrambled into the distance formulas.  Besides, Hawking proved that the entropy varies with half-diameter squared, not half-diameter cubed.”

“But you could still measure your hydrogen sphere with them and that’d get rid of that 1033 discrepancy between the two entropies.”

“Not really, Vinnie.  Old Reliable calculated solid hydrogen’s entropy for a certain mass, not a volume.”

“Hawking can make his arbitrary choice, Sy, he’s Hawking, but that doesn’t let the chemists off the scaffold.  How did they get away with arbitrarily defining a zero for entropy?”

“Because it worked, Jennie.  They were only concerned with changes — the difference between a system’s state at the end of a process, versus its state at the beginning.  It was only the entropy difference that counted, not its absolute value.”

“Hey, like altitude differences in potential energy.”

“Absolutely, Vinnie, and that’ll be important when we get to Jeremy’s question.  So, Jennie, if you’re only interested in chemical reactions and if it’s still in the 19th Century and the world doesn’t know about isotopes yet, is there a problem with defining zero entropy to be at a convenient set of conditions?”

“Well, but Vinnie’s Second Law says you can never get down to absolute zero so that’s not convenient.”

“Good point, but the Ideal Gas Law and other tools let scientists extrapolate experimentally measured properties down to extremely low temperatures.  In fact, the very notion of absolute zero temperature came from experiments where the volume of a  hydrogen or helium gas sample appears to decrease linearly towards zero at that temperature, at least until the sample condenses to a liquid.  With properly calibrated thermometers, physical chemists knocked themselves out measuring heat capacities and entropies at different temperatures for every substance they could lay hands on.”

“What about isotopes, Mr Moire?  Isn’t chlorine’s atomic weight something-and-a-half so there’s gotta be several of kinds of chlorine atoms so any sample you’ve got is a mixture and that’s random and that has to have a non-zero entropy even at absolute zero.”

“It’s 35.4, two stable isotopes, Jeremy, but we know how to account for entropy of mixing and anyway, the isotope mix rarely changes in chemical processes.”

“But my apples and orange peels, Sy — what does the entropy elephant do about them?”

~~ Rich Olcott

The Battle of The Entropies

(the coffee-shop saga continues)  “Wait on, Sy, a black hole is a hollow sphere?”

I hadn’t noticed her arrival but there was Jennie, standing by Vinnie’s table and eyeing Jeremy who was sill eyeing Anne in her white satin.white satin and 2 elephants“That’s not quite what I said, Jennie.  Old Reliable’s software and and I worked up a hollow-shell model and to my surprise it’s consistent with one of Stephen Hawking’s results.  That’s a long way from saying that’s what a black hole is.”

“But you said some physicists say that.  Have they aught to stand on?”

“Sort of.  It’s a perfect case of ‘depends on where you’re standing.'”

Vinnie looked up.  “It’s frames again, ain’t it?”

“With black holes it’s always frames, Vinnie.  Hey, Jeremy, is a black hole something you could stand on?”

“Nosir, we said the hole’s event horizon is like Earth’s orbit, just a mathematical marker.  Except for the gravity and  the  three  Perils  Jennie and you and me talked about, I’d slide right through without feeling anything weird, right?”

“Good memory and just so.  In your frame of reference there’s nothing special about that surface — you wouldn’t experience scale changes in space or time when you encounter it.  In other frames, though, it’s special.  Suppose we’re standing a thousand miles away from a solar-size black hole and Jeremy throws a clock and a yardstick into it.  What would we see?”

“This is where those space compression and time dilation effects happen, innit?”

“You bet, Jennie.  Do you remember the formula?”

“I wrote it in my daybook … Ah, here it is —Schwarzchild factorMy notes say D is the black hole’s diameter and d is another object’s distance from its center.  One second in the falling object’s frame would look like f seconds to us.  But one mile would look like 1/f miles.  The event horizon is where d equals the half-diameter and f goes infinite.  The formula only works where the object stays outside the horizon.”

“And as your clock approaches the horizon, Jeremy…?”

“You’ll see my clock go slower and slower until it sto —.  Oh.  Oh!  That’s why those physicists think all the infalling mass is at the horizon, the stuff falls towards it forever and never makes it through.”

“Exactly.”

“Hey, waitaminute!  If all that mass never gets inside, how’d the black hole get started in the first place?”

“That’s why it’s only some physicists, Vinnie.  The rest don’t think we understand the formation process well enough to make guesses in public.”

“Wait, that formula’s crazy, Sy.  If something ever does get to where d is less than D/2, then what’s inside the square root becomes negative.  A clock would show imaginary time and a yardstick would go imaginary, too.  What’s that about?”

“Good eye, Anne, but no worries, the derivation of that formula explicitly assumes a weak gravitational field.  That’s not what we’ve got inside or even close to the event horizon.”

“Mmm, OK, but I want to get back to the entropy elephant.  Does black hole entropy have any connection to the other kinds?”

Strutural, mostly.  The numbers certainly don’t play well together.  Here’s an example I ran up recently on Old Reliable.  Say we’ve got a black hole twice the mass of the Sun, and it’s at the Hawking temperature for its mass, 12 billionths of a Kelvin.  Just for grins, let’s say it’s made of solid hydrogen.  Old Reliable calculated two entropies for that thing, one based on classical thermodynamics and the other based on the Bekenstein-Hawking formulation.”Entropy calculations“Wow, Old Reliable looks up stuff and takes care of unit conversions automatically?”

“Slick, eh, Jeremy?  That calculation up top for Schem is classical chemical thermodynamics.  A pure sample of any element at absolute zero temperature is defined to have zero entropy.  Chemical entropy is cumulative heat capacity as the sample warms up.  The Hawking temperature is so close to zero I could treat heat capacity as a constant.

“In the middle section I calculated the object’s surface area in square Planck-lengths lP², and in the bottom section I used Hawking’s formula to convert area to B-H entropy, SBH.  They disagree by a factor of 1033.”

A moment of shocked silence, and then…

~~ Rich Olcott

Rockfall

<continued>  The coffee shop crowd had gotten rowdy in response to my sloppy physics, but everyone hushed when I reached for my holster and drew out Old Reliable.  All had heard of it, some had seen it in action — a maxed-out tablet with customized math apps on speed-dial.

“Let’s take this nice and slow.  Suppose we’ve got an non-charged, non-spinning solar-mass black hole.  Inside its event horizon the radius gets weird but let’s pretend we can treat the object like a simple sphere.  The horizon’s half-diameter, we’ll call it the radius, is rs=2G·M/c²G is Newton’s gravitational constant, M is the object’s mass and c is the speed of light.  Old Reliable says … about 3 kilometers.  Question is, what happens when we throw a rock in there?  To keep things simple, I’m going to model dropping the rock gentle-like, dead-center and with negligible velocity relative to the hole, OK?”

<crickets>

“Say the rock has the mass of the Earth, almost exactly 3×10-6 the Sun’s mass.  The gravitational potential energy released when the rock hits the event horizon from far, far away would be E=G·M·m/rs, which works out to be … 2.6874×1041 joules.  What happens to that energy?”falling rock and black hole

rs depends on mass, Mr Moire, so the object will expand.  Won’t that push on what’s around it?”

“You’re thinking it’d act like a spherical piston, Jeremy, pushing out in all directions?”

“Yeah, sorta.”

“After we throw in a rock with mass m, the radius expands from rs to rp=2G·(M+m)/c².  I set m to Earth’s mass and Old Reliable says the new radius is … 3.000009 kilometers.  Granted the event horizon is only an abstract math construct, but suppose it’s a solid membrane like a balloon’s skin.  When it expands by that 9 millimeters, what’s there to push against?  The accretion disk?  Those rings might look solid but they’re probably like Saturn’s rings — a collection of independent chunks of stuff with an occasional gas molecule in-between.  Their chaotic orbits don’t have a hard-edged boundary and wouldn’t notice the 9-millimeter difference.  Inward of the disk you’ve got vacuum.  A piston pushing on vacuum expends zero energy.  With no pressure-volume work getting done that can’t be where the infall energy goes.”

“How about lift-a-weight work against the hole’s own gravity?”

“That’s a possibility, Vinnie.  Some physicists maintain that a black hole’s mass is concentrated in a shell right at the event horizon.  Old Reliable here can figure how much energy it would take to expand the shell that extra 9 millimeters.  Imagine that simple Newtonian physics applies — no relativistic weirdness.  Newton proved that a uniform spherical shell’s gravitational attraction is the same as what you’d get from having the same mass sitting at the shell’s geometric center.  The gravitational pull the shell exerts on itself originally was E=G·M²/rs.  Lifting the new mass from rs to rp will cost ΔE=G·(M+m)²/r– G·M²/rs.  When I plug in the numbers…  That’s interesting.”

Vinnie’s known me long enough to realize “That’s interesting” meant “Whoa, I certainly didn’t expect THAT!

“So what didja expect and whatcha got?”

“What I expected was that lift-it-up work would also be just a small fraction of the infall energy and the rest would go to heat.  What I got for ΔE here was 2.6874×1041 joules, exactly 100% of the input.  I wonder what happens if I use a bigger planet.  Gimme a second … OK, let’s plot a range …  How ’bout that, it’s linear!”ep-es

“Alright, show us!”

All the infall energy goes to move the shell’s combined mass outward to match the expanded size of the event horizon.  I’m amazed that such a simple classical model produces a reasonable result.”

“Like Miss Plenum says, Mr Moire, sometimes the best science comes from surprises.”

“I wouldn’t show it around, Jeremy, except that it’s consistent with Hawking’s quantum-physics result.”

“How’s that?”

“Remember, he showed that a black hole’s temperature varies as 1/M.  We know that temperature is ΔE/ΔS, where the entropy change ΔS varies as .  We’ve just found that ΔE varies as M.  The ΔE/ΔS ratio varies as M/M²=1/M, just like Hawking said.”

Then Jennie got into the conversation.

~~ Rich Olcott

Red Harvest

<continued> Al’s coffee shop was filling up as word got around about Anne in her white satin.  I saw a few selfie-takers in the physics crowd surreptitiously edge over to get her into their background.  She was busy thinking so she didn’t notice.  “The entropy-elephant picture is starting to come together, Sy.  We started out with entropy measuring accumulated heat capacity in a steam engine.”

“That’s where Carnot started, yes.”

“But when Jeremy threw that hot rock into the black hole” <several in the astronomy crew threw startled looks at Jeremy>, “its heat energy added to the black hole’s mass, but it should have added to the black hole’s entropy, too.  ‘Cause of Vinnie’s Second Law.”white satin and black hole 3

Vinnie looked up.  “Ain’t my Second Law, it’s thermodynamics’ Second Law.  Besides, my version was ‘energy’s always wasted.’  Sy’s the one who turned that into ‘entropy always increases.'”

“So anyway, black holes can’t have zero entropy like people used to think.  But if entropy also has to do with counting possibilities, than how does that apply to black holes?  They have only one state.”

“That’s where Hawking got subtle.  Jeremy, we’ve talked about how the black hole’s event horizon is a mathematical abstraction, infinitely thin and perfectly smooth and all that.”

“Yessir.”

“Hawking moved one step away from that abstraction.  In essence he said the  event horizon is surrounded by a thin shell of virtual particles.  Remember them, Jeremy?”

“Uh-huh, that was on my quest to the event horizon.  Pairs of equal and opposite virtual particles randomly appear and disappear everywhere in space and because they appear together they’re entangled and if one of them dips into the event horizon then it doesn’t annihilate its twin which — Oh!  Random!  So what’s inside the event horizon may have only one state, so far as we know, but right outside the horizon any point may or may not be hosting, can I call it an orphan particle?  I’ll bet that uncertainty give rise to the entropy, right?”

<finger-snaps of approval from the physics side of the room>

“Well done, Jeremy!  ‘Orphan’ isn’t the conventional term but it gets the idea across.”

“Wait, Sy.  You mentioned that surface area and entropy go together and now I see why.  The larger the area, the more room there is for those poor orphans.  When Jeremy’s rock hit the event horizon and increased the black hole’s mass, did the surface area increase enough to allow for the additional entropy?” <more finger-snapping>

“Sure did, Anne.  According to Hawking’s calculation, it grew by exactly the right amount.  Mass and area both grow as the square of the diameter.”

“How come not the radius?”

“Well , Vinnie, the word ‘radius‘ is tricky when you’re discussing black holes.  The event horizon is spherical and has a definite diameter — you could measure it from the outside.  But the sphere’s radius extends down to the singularity and is kind of infinite and isn’t even strictly speaking a distance.  Space-time is twisted in there, remember, and that radial vector is mostly time near its far end.  On the other hand, you could use ‘radius‘ to mean ‘half the diameter‘ and you’d be good for calculating effects outside the event horizon.”

“OK, that’s the entropy-area connection, but how does temperature tie in with surface gravity?”

“They’re both inversely dependent on the black hole’s mass.  Let’s take surface gravity first, and here when I say ‘r‘ I’m talking ‘half-diameter,‘ OK?”

“Sure.”

“Good.  Newton taught us that an object with mass M has a gravitational attraction proportional to M/r².  That still holds if you’re not inside the event horizon.  Now, the event horizon’s r is also proportional to the object’s mass so you’ve got M/M² which comes to 1/M.  With me?”

“Yeah.”

“Hawking used quantum physics to figure the temperature thing, but here’s a sloppy short-cut.  Anne, remember how we said that entropy is approximately heat capacity divided by temperature?”

“Mm-hmm.”

“The shell’s energy is mostly heat and proportional to M.  We’ve seen the shell’s entropy is proportional to .  The temperature is heat divided by entropy.  That’s proportional to M/M² which is the same 1/M as surface gravity.” <boos from all sides>. “Hey, I said it was sloppy.”

~~ Rich Olcott

Rockin’ Round The Elephant

<continued…>  “That’s what who said?  And why’d he say that?”

“That’s what Hawking said, Al.  He’s the guy who first applied thermodynamic analysis to black holes.  Anyone happen to know the Three Laws of Thermodynamics?”

Vinnie pipes up from his table by the coffee shop door.  “You can’t win.  You can’t even break even.  But you’ll never go broke.”

“Well, that’s one version, Vinnie, but keep in mind all three of those focus on energy.  The First Law is Conservation of Energy—no process can create or destroy energy, only  transform it, so you can’t come out ahead.  The Second Law is really about entropy—”

“Ooo, the elephant!”white satin and black hole 2

“Right, Anne.  You usually see the Second Law stated in terms of energy efficiency—no process can convert energy to another form without wasting some of it. No breaking even.  But an equivalent statement of that same law is that any process must increase the entropy of the Universe.”

“The elephant always gets bigger.”

“Absolutely.  When Bekenstein and Hawking thought about what would happen if a black hole absorbed more matter, worst case another black hole, they realized that the black hole’s surface area had to follow the same ‘Never decrease‘ rule.”

“Oh, that Hawking!  Hawking radiation Hawking!  The part I didn’t understand, well one of the parts, in that “Black Holes” Wikipedia article!  It had to do with entangled particles, didn’t it?”

“Just caught up with us, eh, Jeremy?  Yes, Stephen Hawking.  He and Jacob Bekenstein found parallels between what we can know about black holes on the one hand and thermodynamic quantities on the other.  Surface area and entropy, like we said, and a black hole’s mass acts mathematically like energy in thermodynamics.  The correlations were provocative ”

“Mmm, provocative.”

“You like that word, eh, Anne?  Physicists knew that Bekenstein and Hawking had a good analogy going, but was there a tight linkage in there somewhere?  It seemed doubtful.”

“Nothin’ to count.”

“Wow, Vinnie.  You’ve been reading my posts?”

“Sure, and I remember the no-hair thing.  If the only things the Universe can know about a black hole are its mass, spin and charge, then there’s nothing to figure probabilities on.”

“Exactly.  The logic sequence went, ‘Entropy is proportional to the logarithm of state count, there’s only one state, log(1) equals zero,  so the entropy is zero.’  But that breaks the Third Law.  Vinnie’s energy-oriented Third Law says that no object can cool to absolute zero temperature.  But an equivalent statement is that no object can have zero entropy.”

“So there’s something wrong with black hole theory, huh?”

“Which is where our guys started, Vinnie.  Being physicists, they said, ‘Suppose you were to throw an object into a black hole.  What would change?’

“Its mass, for one.”

“For sure, Jeremy.  Anything else?”

“It might not change the spin, if you throw right.”

“Spoken like a trained baseball pitcher.  Turns out its mass governs pretty much everything about a black hole, including its temperature but not spin or charge.  Once you know the mass you can calculate its entropy, diameter, surface area, surface gravity, maximum spin, all of that.  Weird, though, you can’t easily calculate its volume or density — spatial distortion gets in the way.”

“So what happens to all those things when the mass increases?”

“As you might expect, they change.  What’s interesting is how each of them change and how they’re linked together.  Temperature, for instance, is inversely proportional to the mass and vice-versa.  Suppose, Jeremy, that you threw two big rocks, both the same size, into a black hole.  The first rock is at room temperature and the other’s a really hot one, say at a million degrees.   What would each do?”

“The first one adds mass so from what you said it’d drop the temperature.  The second one has the same mass, so I don’t see, wait, temperature’s average kinetic energy so the hot rock has more energy than the other one and Einstein says that energy and mass are the same thing so the black hole gets more mass from the hot rock than from the cold one so its temperature goes down … more?  Really?”

“Yup.  Weird, huh?”

“How’s that work?”

“That’s what they asked.”

~~ Rich Olcott

Schrödinger’s Elephant

Al’s coffee shop sits right between the Astronomy and Physics buildings, which is good because he’s a big Science fan.  He and Jeremy are in an excited discussion when Anne and I walk in.  “Two croissants, Al, and two coffees, black.”

“Comin’ up, Sy.  Hey, you see the news?  Big days for gravitational astronomy.”

Jeremy breaks in.  “There’s a Nobel Prize been announced —”

“Kip Thorne the theorist and Barry Barish the management guy —”

“and Rainer Weiss the instrumentation wizard —”

“shared the Physics prize for getting LIGO to work —”

“and it saw the first signal of a black hole collision in 2015 —”

“and two more since —”

“and confirmed more predictions from relativity theory —”

“and Italy’s got their Virgo gravitational wave detector up and running —”

“And Virgo and our two LIGOs, —”

“Well, they’re both aLIGOs now, being upgraded and all —”

“all three saw the same new wave —”

“and it’s another collision between black holes with weird masses that we can’t account for.  Who’s the lady?”

“Al, this is Anne.  Jeremy, close your mouth, you’ll catch a fly.”  (Jeremy blushes, Anne twinkles.)  “Anne and I are chasing an elephant.”

“Pleased to meetcha, Anne.  But no livestock in here, Sy, the Health Department would throw a fit!”

I grin.  “That’s exactly what Eddie said.  It’s an abstract elephant, Al.  We’ve been discussing entropy. Which is an elephant because it’s got so many aspects no-one can agree on what it is.  It’s got something to do with heat capacity, something to do with possibilities you can’t rule out, something to do with signals and information.  And Hawking showed that entropy also has something to do with black holes.”

“Which I don’t know much about, fellows, so someone will have to explain.”

Jeremy leaps in.  “I can help with that, Miss Anne, I just wrote a paper on them.”

“Just give us the short version, son, she can ask questions if she wants a detail.”

“Yessir.  OK, suppose you took all the Sun’s mass and squeezed it into a ball just a few miles across.  Its density would be so high that escape velocity is faster than the speed of light so an outbound photon just falls back inward and that’s why it’s black.  Is that a good summary, Mr Moire?”

“Well, it might be good enough for an Internet blog but it wouldn’t pass inspection for a respectable science journal.  Photons don’t have mass so the whole notion of escape velocity doesn’t apply.  You do have some essential elements right, though.  Black holes are regions of extreme mass density, we think more dense than anywhere else in the Universe.  A black hole’s mass bends space so tightly around itself that nearby light waves are forced to orbit its region or even spiral inward.  The orbiting happens right at the black hole’s event horizon, its thin shell that encloses the space where things get really weird.  And Anne, the elephant stands on that shell.”white satin and black hole“Wait, Mr Moire, we said that the event horizon’s just a mathematical construct, not something I could stand on.”

“And that’s true, Jeremy.  But the elephant’s an abstract construct, too.  So abstract we’re still trying to figure out what’s under the abstraction.”

“I’m trying to figure out why you said the elephant’s standing there.”

“Anne, it goes back to the event horizon’s being a mathematical object, not a real one.  Its spherical surface marks the boundary of the ultimate terra incognita.  Lightwaves can’t pass outward from it, nor can anything material, not even any kind of a signal.  For at least some kinds of black hole, physicists have proven that the only things we can know about one are its mass, spin and charge.  From those we can calculate some other things like its temperature, but black holes are actually pretty simple.”

“So?”

“So there’s a collision with Quantum Theory.  One of QT’s fundamental assumptions is that in principle we can use a particle’s current wave function to predict probabilities for its future.  But the wave function information disappears if the particle encounters an event horizon.  Things are even worse if the particle’s entangled with another one.”

“Information, entropy, elephant … it’s starting to come together.”

“That’s what he said.”

~~ Rich Olcott

A log by any other name

“Hey, Mr Moire?”

“Yes, Jeremy?”

“What we did with logarithms and exponents.  You showed me how my Dad’s slide-rule uses powers of 10, but we did that compound interest stuff with powers of 1.1.  Does that mean we could make a slide-rule based on powers of any number?”

“Sure could, in principle, but it’d be a lot harder to use.  A powers-of-ten model works well with scientific notation.  Suppose you want to calculate the number of atoms in 5.3 grams of carbon.  Remember Avagadro’s number?”

“Ohhh, yeah, chem class etched that into my brain.  It’s 6.02×10²³ atoms per gram atomic weight.  Carbon’s atomic weight is 12, so the atom count would be (5.3 grams)×(6.02×10²³ atoms / 12 grams), whatever that works out to be.”

“Nicely set up.  With the slide-rule you’d do the 5.3×6.02/12 part, then take care of the ten-powers in your head or on a scrap of paper.  It’d be ugly to do that with a slide-rule based on powers of π, for example.  Although, once you get away from the slide-rule it’s perfectly possible to do log-and-exponent calculations on other bases.  A couple of them are real popular.  Base-2, for instance.”2-10-e logs

“Powers of two?  Oh, binary!   2, 4, 8, 16, like that.  And 1/2, 1/4, 1/8.  Hard to imagine what a base-2 slide-rule would look like — zero at one end, I suppose, and one at the other and lots of fractions in-between.”

“Well, no.  Is there a zero on your Dad’s base-10 slide-rule there?”

“Uh, no, the C scale has a one at each end.”

“The left-hand ‘1’ can stand for one or ten or a thousand or a thousandth.  Whatever you pick for it, the right-hand ‘1’ stands for ten times that.”

“Ah, then a base-2 slide-rule would also have ones at either end in binary but they’d mean numbers that differ by a factor of two.  But there’d still be a bunch of fractions in-between, right?”

“Right, but no zero anywhere.  Why not?”

“Oh, there’s no power-of-two that equals zero.”

“No power-of-anything that equals zero.  Except zero, of course, but zero-to-anything is still zero so that’s not much use for calculating.  On the other hand, anything to the zero power is 1 so log(1)=0 in every base system.”

“You said a couple of popular bases.  What’s the other one?”

“Euler’s number e=2.71828…  It’s actually closely related to that compound interest calculation you did.  There’s several ways to compute e, but the most relevant for us is the limit of [1+(1/n)]n as n gets very large.  Try that on your spreadsheet app.”

“OK, I’m loading B1 with =(1+(1/C1))^C1 and I’ll try different numbers in C1.  One hundred gives me 2.7048, a thousand gives me 2.7169 (diminishing returns, hey) — ah, a million sure enough comes up with 2.71828.”

“There you go.  Changing C1 to even bigger values would get you even closer to e‘s exact value but it’s one of those irrationals like π so you can only get better and better approximations.  You see the connection between that formula and the $×[1+(rate/n)]n formula?”

“Sure, but what use is it?  If that’s the e formula the rate is 100%.”

“You can think of e as what happens when growth is compounded continuously.  It’s not often used in retail financial applications, but it’s everywhere in advanced math and physics.  I don’t want to get too much into that because calculus, but here’s one specialness.  The exponential function ex is the only one whose slope at every point is equal to its value there.”

“Nice.  But we’ve been talking logs.  Are base-e logarithms special?”

“So special that they’ve got their own name — natural logarithms, as opposed to common logarithms, the base-10 kind that power slide-rules.  They’ve even got their own abbreviations — ln(x) or loge(x) as opposed to log(x) or log10(x).”

“What makes them ‘natural’?”

“That’s harder to answer.  The simplest way is to point out that you can convert a log on one base to any other base.  For instance, ln(10)=2.303 therefore e2.303=10=101.  So log10 of any number x is 2.303 times ln(x) and ln(x)=log10(x)/2.303.  There are loads of equations that look simple and neat in terms of ln but get clumsy if you have to plug in 2.303 everywhere.”

“Don’t want to be clumsy.”

~~ Rich Olcott

Powers to The People

“You say logarithms and exponents have to do with growth, Mr Moire?”Log Exp and slide rule captioned

“Mm-hm.  Did they teach you about compound interest in that Modern Living class, Jeremy?”

“Yessir.  Like if I took out a loan of say $10,000 at 10% interest, I’d owe $11,000 at the end of the first year and, um…, $12,100 after two years because the 10% applies to the interest, too.”

“Nice mental arithmetic.  So what you did was multiply that base amount by 1+10% the first year and (1+10%)² the second, right?”

“Well, that’s not the way I thought of it, but that’s the way it works out, alright.”

“So it’d be (1+10%)³ the third year and in general (1+rate)n after n years, assuming you don’t make any payments.”

“Sure.”

“OK, how do we have to revise that formula if the interest is compounded daily and you get lucky and pay it off in a lump sum after 19 months?”

“Can I use your whiteboard?”

“Go ahead.”

“OK, first thing to change is the rate, because the 10% was for the whole year.  We need to use 10%/365 inside those parentheses.  But then we’re counting time by days instead of years.  Each day we multiply the previous amount by another (1+10%/365), which makes the exponent be the number of days the loan is out, which is 19 times whatever the average number of days in a month is.”

“Why not just use 19×(365÷12)?”

“Can we do that?  In an exponent?”

“Perfectly legal, done in all the best circles.”

“So what we’ve got is
10000×[1+(10%/365)]19×(365÷12).

“Try poking that into your smartphone’s spreadsheet app and format it for dollars.”

“In spreadsheet-ese that’d be
=10000*(1+(0.1/365))^(19*(365/12)).
Hah!  The app took it, and comes up with … $11,715.31.  Lemme try that with two years that’s 24 months.  Now it’s $12,213.69.  Hey, that’s $123 more than two years compounded once-a-year.  Compounding more often generates more interest, doesn’t it?”

“Which is why daily compounding is the general rule in consumer lending.  But there’s a couple more lessons to be learned here.  One, you can do full-on arithmetic inside an exponent.  That’s what the log log scales are for on a slide rule.  Two, the expression you worked up has the form
base×(growth factor)(time function).
Any time you’re modeling something that grows or shrinks in some percentage-wise fashion, you’re going to have exponential expressions like that.”

“Hey, I tried compounding more often and it didn’t make much difference.  I put in 3650 instead of 365 and it only added 30¢ to the total.”

“Which gives me an idea.  Load up cells A1:A7 in your spreadsheet with this series: 1, 3, 10, 30, 100, 300, 1000.  Got it?”

“Ahhh … OK.  Now what?”

“Now load cell B1 with +10000*(1+(0.1/A1))^(24*(A1/12)).”

“Says $12,100.”

“Fine.  Now copy that cell down through B7.”

“Hmm…  The answers go up but by less and less.”

“Right.  Now highlight A1:B7 and tell your spreadsheet to generate a scatter plot connected by straight lines.”

“Gimme a sec … OK.  The line goes straight up, then straight across almost.”

“Final step — click on the x-axis and tell the program to use a logarithmic scale.”diminishing returns

“Hey, the x-numbers scrunch and wrap like on the A, B and K scales on Dad’s slide-rule.”

“Which is what you’d expect, right?  They both use logarithmic scales.  The slide-rule uses logarithms to do its arithmetic thing.  The graphing software lets you use logarithms to display big numbers together with small numbers.  But the neat thing about this graph is that it shows two different flavors of a general pattern.  Adding something, say 20, to a number to the left on the x-axis moves you a longer distance than adding the same amount somewhere over on the right.  That’s diminishing returns.”

“Look, the heeling-over curve shows diminishing returns from compounding interest more and more often.”

Exploding returns“Good.  Now copy A1:A7 by value into C1:C7 and generate a scatter plot of B1:C7. This time apply the logarithmic scale to the y-axis. This’ll show us how often we’d need to compound to get the yield on the x-axis.”

“Whoa, it blows up, like there’s no way to get up to $12,300.”

“Call it exploding returns.  Increasing the exponent increases the growth factor’s impact.  Beyond a threshold, a small change in the growth factor can make a huge difference in the result.”

“Seriously huge.”

“Exponentially huge.”

~~ Rich Olcott

Log-rhythmic gymnastics

I recognized the knock.  “Come on in, Jeremy, the door’s open.”

“Hi, Mr Moire.  Can you believe this weather?  Did Miss Anne like her gelato?  What’s this funny ruler thing that my Dad sent me?  He said they used it to send men to the moon.”

log rhythm

“No, yes, it’s called a slide rule, and he’s right — back in the 1960s engineers used slip-sticks like that when they couldn’t get to a four-function mechanical calculator.  Now, though, they’re about as useful as a cast-iron bath towel.  Kind of a shame, because the slide rule is based on mathematical principles that are fundamental to just about all of mathematical physics.”

“Like what?”

“The use of exponents, for one.  Add exponents to multiply, subtract to divide.  Quick — what’s 100×100×100?”

“Uhh…  Ten million?”

“Nup.  But if I recast that as 102×102×102=102+2+2?”

“106.  Oh, that’s a million.”

“See how easy?  We’ve known that kind of arithmetic since Archimedes.  The big advance was in the early 1600s when John Napier realized that the exponents didn’t have to be integers.  Take square roots, for example.  What’s the square root of 100?”

“Ten.”

“Sure — √100=√(102)=102/2=101=10.  Now write √10 with exponents.”

“Would it be 101/2?”

“Let’s see.  Do you have a spreadsheet app on that tablet you carry?”

“Sure.”

“OK, bring it up.  Poke =10^(0.5) into cell A1, and =A1^2 into A2.  What do you get?”

“Gimme a sec … the first cell says 3.162278 and the second says … exactly 10.”

“Or as exact as that software is set up for.  So what we’ve got is that 0.5 is a perfectly good power of ten, and exponent arithmetic works the same with it and all the other rational numbers that it does with integers.  Too big a leap, or are you OK with that?”

“OK, I suppose, but what does that have to do with this gadget getting people to the Moon?”

“Take a good look at at the C scale, the lowest one on the middle ruler that slides back and forth.  Are the numbers evenly spaced out?”

“No, they’re stretched out at the low end, scrunched together at the high end.”Slide rule 3“Look for 3.16 on there.  You read it like a ruler — the number before the decimal point shows as a digit, then you locate the fractional part with the high and low vertical lines.”

“Got it.  About halfway across.”

“It’s exactly on center if that’s a good slide rule.  A number’s distance along the scale should be proportional to the exponent of 10 (we call it the logarithm) that gives you that number.  The C scale’s left end is 1.0, its right end is 10.0, and 3.162 is halfway.”

“Ah, I see how it works.  Adding distances is like adding exponents.  So if I want to multiply 2 by 3 I slide the middle ruler until its 1 is against 2 on the D scale, then I look for 3 on the C scale and, yes! it’s right next to 6 on the D scale!  Oh and the A and B scales wrap twice in the same distance so they must be logarithms for squares?  Hah, there’s 10 on B right above where I found 3.16 on CK wraps three times so it must be cubes, but why did they call it K?”

“Blame the Germans, who spell ‘cube‘ with a ‘k‘.  What do you suppose CI does?”

“Hmm, it runs backwards.  Adding with CI would be like subtracting distances which would be like dividing, so … I’ll bet it’s ‘C-Inverse‘!”

“You win the mink-lined frying pan.  So you see how even a simple 5- or 6-scale device can do a lot of calculation.  The really fancy ones had as many as a dozen scales on each side, ready for doing trigonometry, compound interest, all kinds of things.  That’s the quick compute power the rocket engineers used back in the 50s.”

“Logarithms did all that, eh?”

“Yup, that and the inverse operation, exponentiation.  Of course, you don’t have to build your log and exponent system around 10.  If you’re into information theory you might use powers of 2.  If you’re doing physics or pure math you’re probably going to use a different base, Euler’s number e=2.71828.  Looks weird, but it’s really useful because calculus.”

“So logarithms do calculating.  You said something about physical principles?”

“Calculating growth, for instance…”

~~ Rich Olcott