❄❅❆Snowflakes ❆❅❄

<chirp, chirp> “Moire here.”

“Uncle Sy! Uncle Sy! It’s snowing again!”

“Yes, Teena, I noticed. I’ll be over to help you build a snowman in a little while.”

“Yay! There’s so much snow coming down. I bet there’s a kazillion snowflakes!”

“Maybe even more. And no two of them are exactly alike.”

“Yeah, that’s what Mommy said. I went outside a while ago and caught a bunch on my coat sleeve like you showed me. All different shapes — stars and pencils and almost-round ones and spiky balls. I can’t remember them all. How do we know that they never match? Did someone look at them with a computer camera?”

“Whoa, that’s too big a job for even a really fast computer with a really good camera. No, it goes back to how snowflakes grow up.”

“Ha-ha, that’s funny! Little baby snowflake grows up to be a big Mommy snowflake!”

“Well, in a way that’s what happens. You know clouds are really made of teeny water droplets, right?”

“Yeah, Mommy says it’s a fog, but way up in the air. But the fluffy ones are pretty.”

“Yes they are, but inside some of the not-fluffy clouds it can be very cold and windy.”

“Danger cold?”

“Very danger cold. Cold enough for some of those teeny droplets to freeze and become ice droplets. When an ice droplet touches a water droplet they merge to make a bigger piece of ice. The winds blow the ice up and down between wet places and cold places inside the cloud over and over again. The piece of ice grows and grows until it gets so heavy it falls down out of the cloud.”

“Like a roller coaster! But wouldn’t that just make round ice? That’s not what I caught on my sleeve.”

“Sometimes it does. Remember that hail storm we had last year?”

“Oooo. Yeah, we got inside just in time. Those hailstones went pitter‑patter all over the sidewalk and the windows.”

“Just be very glad they were only pinkie‑nail‑sized. I was in a storm once where the hail was as bigger than your shooter marble. It made dents on my car.”

“WOW! That would hurt!”

“It certainly would. I hope you’re never in one of those ice storms, just stars‑and‑pencils snow like you saw on your sleeve. Stars‑and‑pencils happens when the winds inside the cloud are gentler and give the teeny ice droplets time to grow a different way.”

“Different how?”

“Want to do an experiment?”

“Over the phone?”

“Sure. Get your bag of marbles and a lid from one of your board game boxes. Say when you’re ready.”

“OK … ready!”

“OK, Put the lid on the floor face‑down but prop it up so one corner is lower than the other three.”

“Umm … ready!”

“Now slowly pour your marbles into the lid so they lie together in one layer. Slowly, we don’t want them going all over the floor.”

“That’d make Mommy mad. Ooo, pretty! They make a honeycomb pattern. I see a lot of hexa–, um…”

“Hexagons. Good girl, you did that just right. That pattern is a lot like how water molecules arrange themselves when they freeze. When a new molecule walks up to some ice, it tries to touch as many other molecules as it can. That automatically makes hexagons.”

“Oh! Teeny hexagons grow up to be snow hexagons! Ha-ha!!”

“Mm-hm, and depending on conditions some rows grow fast to make flat plate snowflakes or a different set of rows might grow quickly to make frilly stars.”

“But why don’t they all grow the same?”

“Because of how messy it is inside that cloud. Winds blowing up and down and sideways, wet places and not‑so‑wet places scattered all over everywhere. Two baby snowflakes starting right next to each other can wind up on opposite sides of the cloud with entirely different stories to tell.”

“But then how can different sides of the same snowflake be the same?”

“They’re on the same flake so they’re always close together as the flake grows. They don’t get a chance for different stories. OK, I just finished up. It’s snowman time.”

“Yay!”

Nope, ain’t gonna happen. Not with water, not with anything else.

~~ Rich Olcott

The Edges of The Universe

<chirp, chirp> “Moire here.”

“Um, Uncle Sy?”

“Hi, Teena! I didn’t know you knew my phone number. It’s past your bedtime. How are you? Is everything OK?”

“I’m fine. Mommie dialed you for me. I had a question she said you could answer better than her and that would be my bedtime story.”

“Your Mommie’s a very smart person in several ways. What’s your question?”

“Where’s the edge of the Universe?”

“Whoa! Where’d that question come from?”

“Well, I was lying on my bed and I thought, the edge of me is my skin and the edge of my room is the walls and the edge of our block is the street but I don’t know what any of the bigger edges are so I asked Mommie and she said to ask you. She’s writing something.”

“Of course she is. One answer is you’re smack on an edge, but some people think that’s a wrong answer so let’s talk about all the edges, OK?”

“On an edge??!? I’m in the middle of my bed.”

“Hey, I heard you sit up. Lie back down, this is supposed to be a bedtime story so we’re supposed to be calm, OK? All right, now. Once upon a time —”

“Really?”

“Yes, really. Now hush and let me start. Once upon a time, people thought that the sky was a solid bowl or maybe a curtain that came down all the way to meet the Earth just over the horizon, and that was the edge of the Universe. But then people started traveling and they realized that the horizon moved when they did.”

“Like rainbows.”

“Exactly like rainbows. Eventually they’d traveled everywhere they could walk. As they went they made maps. According to the maps, the world they knew about was surrounded by ocean so the edge of the Universe was the ocean.”

“Except for Moana’s people that crossed the ocean.”

“Right, but even they only went from island to island. Their version of a map was as flat as the paper maps the European and Chinese explorers used.”

“But the world is really round like my world ball.”

“Yes, it is. It took humans a long time to accept that, because it meant their world couldn’t be all there is. A round world would have to float in space. Think about this — what’s the edge of our world?”

“Umm … the air?”

“Very good, sweetie. Way up, 60 miles high, the air gets so thin that we call that height the Edge of Space.”

“That’s the inside edge of space. Where’s the outside edge of space?”

“It’s moved outward as our astronomers have gotten better at looking far away. For a long time they thought that the outermost stars in our Milky Way galaxy marked the edge of the Universe. Then an astronomer named Edwin Hubble—”

“Oh, like the Hubble Space Telescope that made the pretty pictures in my ‘Stronomy book!”

“Mm-hm, the Hubble was named for him because he did such important work. Anyway, he showed that what people thought were stardust clouds inside the Milky Way were actually other galaxies like ours but far, far away. With the Hubble and other telescopes we’ve pushed out our known Universe to … I don’t even know the name of such a big number.”

“So that’s the edge?”

“We don’t think so, but we don’t know. Maybe space and galaxies go on forever, maybe galaxies peter out but space goes on, maybe something weird. But there’s a special ‘direction’ that we think does have an edge, maybe two.”

<yawn> “What’s that?”

“Time. One edge was the Big Bang, fourteen billion years ago. We’re pretty sure of that one. The scientists and philosophers argue about whether there’s another edge.”

“Wouldn’t jus’ be f’rever?”

“Mr Einstein thought it would. In fact, he thought that the future is as solidly real as the past is and we’re just watching from the windows of a train rolling along the time tracks.”

“Don’ like that, wanna do diffren’ things.”

“Me, too, sweetie. I prefer the idea that the future doesn’t exist yet; we’re on the front edge of time, building as we go. Dream about that, OK?”

“Okayyyyyy

~~ Rich Olcott

The Sight And Sound of Snow

<ring> “Moire here.”

“Uncle Sy! Uncle Sy! It’s snowing! It’s snowing!”

“Yes, Teena, it started last night after you went to bed. But it’s real early now and I haven’t had breakfast yet. I’ll be over there in a little while and we can do snow stuff.”

“Yaaay! I’ll have breakfast, too. Mommie, can we have oatmeal with raisins?” <click>


<knock, knock> “Uncle Sy! You’re here! I wanna go sledding! Get my sled out, please?”

“G’morning, Sis. G’morning, Teena. Get your snowsuit and boots on, Sweetie. Want to come along, Sis? It’s a cold, dry snow, not much wind.”

“No, I’ll just stay warm and get the hot chocolate ready.”

“Bless you for that, Sis. OK, young’un, ready to go?”

“Ready! Pull me on the sled to the sledding hill, Uncle Sy!”


“Ooo, it’s so quiet. Why’s it always quiet when snow’s falling, Uncle Sy? Is the world holding its breath? And why is snow white? When I hold snow in my hand it melts and then it’s no-color.”

“Always the good questions. Actually, these two are related and they both have to do with the shape of snowflakes. Here, hold out your arm and let’s see if you can catch a few. No, don’t try to chase them, the breeze from your arm will blow them away. Just let them fall onto your arm. That’s right. Now look at them real close.”

“They’re all spiky, not flat and pretty like the ones in my picture book!”

“That’s because they grew fast in a really cold cloud and didn’t have time to develop evenly. You have to work slow to make something that’s really pretty.”

“But if they’re spiky like this they can’t lay down flat together and be cozy!”

“Ah, that’s the key. Fresh spiky snowflakes make fluffy snow, which is why skiers love it. See how the flakes puff into the air when I scuff my boot? Those tiny spikes break off easily and make it easy for a ski to glide over the surface. Your sled, too — you’ve grown so big I’d be hard-put to pull you over wet snow. That fluffiness is why <hushed voice> it’s so quiet now.”

“Shhh … <whispered> yeah … <back to full voice> Wait, how does fluffy make quiet?”

“Because sound waves … Have we talked about sound waves? I guess we haven’t. OK, clap your hands once.”

<CLAP!>

“Good. When your hands came together they pushed away the air molecules that were between them. Those molecules pushed on the next molecules and those pushed on the next ones on and on until they got to your ear and you heard the sound. Make sense?”

“Ye-aa-uh. Is the push-push-push the wave?”

“Exactly. OK, now imagine that a wave hits a wall or some packed-down icy snow. What will happen?”

“It’ll bounce off like my paddle-ball toy!”

“Smart girl. Now imagine that a wave hits fluffy snow.”

“Um … it’ll get all lost bouncing between all the spikes, right?”

“Perfect. That’s exactly what happens. Some of the wave is scattered by falling snowflakes and much of what’s left spreads into the snow on the ground. That doesn’t leave much sound energy for us to hear.”

“You said that snow’s white because of what snow does to sound, but look, it’s so bright I have to squint my eyes!”

“That’s not exactly what I said, I said they’re related. Hmm… ah! You know that ornament your Mommie has hanging in the kitchen window?”

“The fairy holding the glass jewel? Yeah, when the sunlight hits it there’s rainbows all over the room! I love that!”

A beam or white light passing through two prisms.  The first produces a spectrum and the second remixes the colors to white.

“I do, too. White light like sunlight has all colors in it and that jewel splits the colors apart so you can see them. Well, suppose that jewel is surrounded by other jewels that can put the colors together again. Here’s a picture on my cellphone for a clue.”

“White goes to rainbow and back to white again … I’ll bet the snowflakes act like little jewels and bounce all the colors around but the light doesn’t get trapped and it comes out and we see the WHITE again! Right?”

“So right that we’re going home for hot chocolate.”

“Yaaay!”

~~ Rich Olcott

PS – A Deeper Look.

A Mole’s Tale

Chilly days are always good for a family trip to the science museum. Sis is interested in the newly unearthed dinosaur bones, but Teena streaks for the Space Sciences gallery. “Look, Uncle Sy, it’s a Mars rover. No, wait — it doesn’t have wheels — it’s a lander!”

Artist’s depiction of InSight — credit NASA/JPL-Caltech

A nearby museum docent catches that. “Good observing, young lady. You’re right, it’s NASA’s Insight lander. It touched down on Mars last Thanksgiving Day. While you were having turkey and dressing, we were having a party over here.”

“Is this the real one? How’d you get it back?”

“No, it’s just a model, but it’s full-size, 19½ feet across. We’re never going to get the real one back — those little bitty landing rockets you see around the electronics compartment are too small to get it off the planet.”

“Tronics compartment? You mean the pretty gold box underneath the flat part? Why’d they make it gold?”

“That gold is just the outside layer of a dozen layers of Mylar insulation. It helped to keep the computers in there cool during the super-hot minutes when the lander was coming down through Mars atmosphere. The insulation also keeps the electronics warm during the cold martian night. A thin gold coating on the outermost layer reflects the bad part of sunlight that would crumble the Mylar.”

“Computers like Mommie’s laptop? I don’t see any screens.”

“They don’t need any. No-one’s on Mars to look at them. The instructions all come in from Earth by radio.”

Sis is getting into it. “Look, Sweetie, the platform in the middle’s about the same size as our kitchen table.”

“Yeah, but it’s got butterfly wings. A flying kitchen table, whee!”

“Those wings are solar panels. They turn sunlight into the electricity Insight needs to run things and keep warm. They make enough power for three households here on Earth.”

“What’s the cake box about?”

SEIS —
Seismic Experiment for Interior Structure

“Cake box?”

“Yeah, down there on the floor.”

“Ah. That’s for … have you ever experienced an earthquake?”

“Yes! Suddenly all the dishes in the cupboard went BANG! It was weird but then everything was fine.”

“I’m glad. OK, an earthquake is when vibrations travel through the Earth. Vibrations can happen on Mars, too, but they’re called…”

“Marsquakes! Ha, that’s funny!”

“Mm-hm. Well, that ‘cake box’ is something called a seismometer. It’s an extremely sensitive microphone that listens for even the faintest vibrations. When scientists were testing the real seismometer in Boulder, Colorado it recorded a steady pulse … pulse … pulse … that they finally traced back to ocean waves striking the coast of California, 1200 miles away. Insight took it to Mars and now it’s listening for marsquakes. It’s already heard a couple dozen. They’ve given the scientists lots of new information about Mars’ crust and insides.”

“Like an X-ray?”

“Just like that. We’ll be able to tell if the planet’s middle is molten–“

“Hot lava! Hot lava!”

“Maybe. Earth has a lot of underground lava, but we think that Mars has cooled off and possibly doesn’t have any. That other device on the ground is supposed to help find out.”

HP3 — Heat Flow and
Physical Properties Package

“It looks like The Little Engine That Could.”

“It does, a little, but this one maybe can’t. We’re still waiting to see. That chimney-looking part held The Mole, a big hollow spike with something like a thermometer at its pointy tip. Inside The Mole there’s a hammer arrangement. The idea was that the hammer would bang The Mole 15 feet into the ground so we could take the planet’s temperature.”

“Did the banging work?”

“It started to, but The Mole got stuck only a foot down. The engineers have been working and working, trying different ways to get it down where we want it but so far it’s still stuck.”

“Aww, poor Mole.”

TWINS – Temperature
and Wind for InSight

“Yes. But there’s another neat instrument up on the platform. Here, I’ll shine my laser pointer at it. See the grey thingy?”

“Uh-huh.”

“That’s a weather station for temperature and wind. You can check its readings on the internet. Here, my phone’s browser’s already set to mars.nasa.gov/insight/weather. Can you read the high and low temperatures?”

“Way below zero! Wow, Mars is chilly! I’d need a nice, warm spacesuit there.”

“For sure.”

~~ Rich Olcott

Seesaw to The Stars

I look around the playground. “Where’s the seesaw, Teena?”

“They took it away. That’s good ’cause I hated that thing!”

“Why’s that, Sweetie?”

“I never could play right on it. Almost never. Sometimes there’d be a kid my size on the other end and that worked OK, but a lot of times a big kid got on the other end and bounced me up in the air. The first time I even fell off and they laughed.”

“Well, I can understand that. I’m sure you’ve been nicer than that to the littler kids.”

“Uh-huh, except for Bratty Brian, but he liked it when I bounced him. He called it ‘going to the Moon’.”

“I can understand that, too. If things go just right you come off your seat and float like an astronaut for a moment. I bet he held onto the handles tight.”

“Yeah, I just wasn’t ready for it the first time.”

“Y’know, there’s another way that Brian’s bounces were like a rocket trip to somewhere. They went through the same phases of acceleration and deceleration.”

“Uncle Sy, you know you’re not allowed to use words like that around me without ‘splaining them.”

“Mmm, they both have to do with changing speed. Suppose you’re standing still. Your speed is zero, right? When you start moving your speed isn’t zero any more and we say you’ve accelerated. When you slow down again we say you’re decelerating. Make sense?”

“So when Bratty Brian gets on the low end of the seesaw he’s zero. When I squinch down at my end he accelerates –“

“Right, that’s like the boost phase of a rocket trip.”

“… And when he’s floating at the very top –“

“Like astronauts when they’re coasting, sort of but not really.”

“… And then they decelerate when they land. Bratty Brian did, too. I guess deceleration is like acceleration backwards. But why such fancy words?”

“No-one paid much attention to acceleration until Mr Newton did. He changed Physics forever when he said that all accelerations involve a force of some kind. That thought led him to the whole idea of gravity as a force. Ever since then, when physicists see something being accelerated they look for the force that caused it and then they look for what generated the force. That’s how we learned about electromagnetism and the forces that hold atoms together and even dark matter which is ultra-mysterious.”

“Ooo, I love mysteries! What did Mr Newton tell us about this one?”

“Nothing, directly, but his laws gave us a clue about what to look for. Tell me what forces were in play during Brian’s ‘moon flight’.”

“Let’s see. He accelerated up and then he accelerated down. I guess while he was on the seesaw seat at the beginning the up-acceleration came from an up-force from his end of the board. And the down-acceleration came from gravity’s force. But the gravity force is there all along, isn’t it?”

“Good point. What made the difference is that your initial force was greater than gravity’s so Brian went up. When your force stopped, gravity’s force was all that mattered so Brian came back down again.”

“So it’s like a tug-of-war, first I won then gravity won.”

“Exactly. Now how about the forces when you were on the merry-go-round?”

“OK. Gravity’s always there so it was pulling down on me. The merry-go-round was pushing up?”

“Absolutely. A lot of people think that’s weird, but whatever we stand on pushes up exactly as hard as gravity pulls us down. Otherwise we’d sink into the ground or fly off into space. What about other forces?”

“Oh, yeah, Mr Newton’s outward force pushed me off until … holding the handles made the inward force to keep me on!”

“Nice job! Now think about a galaxy, millions of stars orbiting around like on a merry-go-round. They feel an outward force like you did, and they feel an inward force from gravity so they all stay together instead of flying apart. But…”

“But?”

“Mr Newton’s rules tell us how much gravity the stars need to stay together. The astronomers tell us that there aren’t enough stars to make that much gravity. Dark matter supplies the extra.”

~~ Rich Olcott

Conversation of Energy

Teena’s next dash is for the slide, the high one, of course. “Ha-ha, Uncle Sy, beat you here. Look at me climbing up and getting potential energy!”

“You certainly did and you certainly are.”

“Now I’m sliding down all kinetic energy, wheee!” <thump, followed by thoughtful pause> “Uncle Sy, I’m all mixed up. You said momentum and energy are like cousins and we can’t create or destroy either one but I just started momentum coming down and then it stopped and where did my kinetic energy go? Did I break Mr Newton’s rule?”

“My goodness, those are good questions. They had physicists stumped for hundreds of years. You didn’t break Mr Newton’s Conservation of Momentum rule, you just did something his rule doesn’t cover. I did say there are important exceptions, remember.”

“Yeah, but you didn’t say what they are.”

“And you want to know, eh? Mmm, one exception is that the objects have to be big enough to see. Really tiny things follow quantum rules that have something like momentum but it’s different. Uhh, another exception is the objects can’t be moving too fast, like near the speed of light. But for us the most important exception is that the rule only applies when all the energy to make things move comes from objects that are already moving.”

“Like my marbles banging into each other on the floor?”

“An excellent example. Mr Newton was starting a new way of doing science. He had to work with very simple systems and and so his rules were very simple. One Sun and one planet, or one or two marbles rolling on a flat floor. His rules were all about forces and momentum, which is a combination of mass and speed. He said the only way to change something’s momentum was to push it with a force. Suppose when you push on a marble it goes a foot in one second and has a certain momentum. If you push it twice as hard it goes two feet in one second and has twice the momentum.”

“What if I’ve got a bigger marble?”

“If you have a marble that’s twice as heavy and you give it the one-foot-per-second speed, it has twice the momentum. Once there’s a certain amount of momentum in one of Mr Newton’s simple systems, that’s that.”

“Oh, that’s why I’ve got to snap my steelie harder than the glass marbles ’cause it’s heavier. Oh!Oh!And when it hits a glass one, that goes faster than the steelie did ’cause it’s lighter but it gets the momentum that the steelie had.”

“Perfect. You Mommie will be so proud of you for that thinking.”

“Yay! So how are momentum and energy cousins?”

“Cous… Oh. What I said was they’re related. Both momentum and kinetic energy depend on both mass and speed, but in different ways. If you double something’s speed you give it twice the momentum but four times the amount of kinetic energy. The thing is, there’s only a few kinds of momentum but there are lots of kinds of energy. Mr Newton’s Conservation of Momentum rule is limited to only certain situations but the Conservation of Energy rule works everywhere.”

“Energy is bigger than momentum?”

“That’s one way of putting it. Let’s say the idea of energy is bigger. You can get electrical energy from generators or batteries, chemical energy from your muscles, gravitational energy from, um, gravity –“

“Atomic energy from atoms, wind energy from the wind, solar energy from the Sun –“

“Cloud energy from clouds –“

“Wait, what?”

“Just kidding. The point is that energy comes in many varieties and they can be converted into one another and the total amount of energy never changes.”

“Then what happened to my kinetic energy coming down the slide? I didn’t give energy to anything else to make it start moving.”

“Didn’t you notice the seat of your pants getting hotter while you were slowing down? Heat is energy, too — atoms and molecules just bouncing around in place. In fact, one of the really good rules is that sooner or later, every kind of energy turns into heat.”

“Big me moving little atoms around?”

“Lots and lots of them.”

~~ Rich Olcott

Conversation of Momentum

Teena bounces out of the sandbox, races over to the playground’s little merry-go-round and shoves it into motion. “Come help turn this, Uncle Sy, I wanna go fast!” She leaps onto the moving wheel and of course she promptly falls off. The good news is that she rolls with the fall like I taught her to do.

“Why can’t I stay on, Uncle Sy?”

“What’s your new favorite word again?”

“Mmmo-MMENN-tumm. But that had to do with swings.”

“Swings and lots of other stuff, including merry-go-rounds and even why you should roll with the fall. Which, by the way, you did very well and I’m glad about that because we don’t want you getting hurt on the playground.”

“Well, it does hurt a little on my elbow, see?”

“Let me look … ah, no bleeding, things only bend where they’re supposed to … I think no damage done but you can ask your Mommie to kiss it if it still hurts when we get home. But you wanted to know why you fell off so let’s go back to the sandbox to figure that out.”

<scamper!> “I beat you here!”

“Of course you did. OK, let’s draw a big arc and pretend that’s looking down on part of the merry-go-round. I’ll add some lines for the spokes and handles. Now I’ll add some dots and arrows to show what I saw from over here. See, the merry-go-round is turning like this curvy arrow shows. You started at this dot and jumped onto this dot which moved along and then you fell off over here. Poor Teena. So you and your momentum mostly went left-to-right.”

“But that’s not what happened, Uncle Sy. Here, I’ll draw it. I jumped on but something tried to push me off and then I did fall off and then I rolled. Poor me. Hey, my arm doesn’t hurt any more!”

“How about that? I’ve often found that thinking about something else makes hurts go away. So what do you think was trying to push you off? I’ll give you a hint with these extra arrows on the arc.”

“That looks like Mr Newton’s new directions, the in-and-out direction and the going-around one. Oh! I fell off along the in-and-out direction! Like I was a planet and the Sun wasn’t holding me in my orbit! Is that what happened, I had out-momentum?”

“Good thinking, Teena. Mr Newton would say that you got that momentum from a force in the out-direction. He’d also say that if you want to stand steady you need all the forces around you to balance each other. What does that tell you about what you need to do to stay on the merry-go-round?”

“I need an in-direction force … Hah, that’s what I did wrong! I jumped on but I didn’t grab the handles.”

“Lesson learned. Good.”

“But what about the rolling?”

“Well, in general when you fall it’s nearly always good to roll the way your body’s spinning and only try to slow it down. People who put out an arm or leg to stop a fall often stress it and and maybe even tear or break something.”

“That’s what you’ve told me. But what made me spin?”

“One of Mr Newton’s basic principles was a rule called ‘Conservation of Momentum.’ It says that you can transfer momentum from one thing to another but you can’t create it or destroy it. There are some important exceptions but it’s a pretty good rule for the cases he studied. Your adventure was one of them. Look back at the picture I drew. You’d built up a lot of going-around momentum from pushing the merry-go-round to get it started. You still had momentum in that direction when you fell off. Sure enough, that’s the direction you rolled.”

“Is that the ‘Conversation of Energy’ thing that you and Mommie were talking about?”

“Conservation. It’s not the same but it’s closely related.”

“Why does it even work?”

“Ah, that’s such a deep question that most physicists don’t even think about it. Like gravity, Mr Newton described what inertia and momentum do, but not how they work. Einstein explained gravity, but I’m not convinced that we understand mass yet.”

~~ Rich Olcott

A Momentous Occasion

<creak> Teena’s enjoying her new-found power in the swings. “Hey, Uncle Sy? <creak> Why doesn’t the Earth fall into the Sun?”

“What in the world got you thinking about that on such a lovely day?”

“The Sun gets in my eyes when I swing forward <creak> and that reminded me of the time we saw the eclipse <creak> and that reminded of how the planets and moons are all floating in space <creak> and the Sun’s gravity’s holding them together but if <creak> the Sun’s pulling on us why don’t we just fall in?” <creak>

“An excellent question, young lady. Isaac Newton thought about it long and hard back when he was inventing Physics.”

“Isaac Newton? Is he the one with all the hair and a long, skinny nose and William Tell shot an arrow off his head?”

“Well, you’ve described his picture, but you’ve mixed up two different stories. William Tell’s apple story was hundreds of years before Newton. Isaac’s apple story had the fruit falling onto his head, not being shot off of it. That apple got him thinking about gravity and how Earth’s gravity pulling on the apple was like the Sun’s gravity pulling on the planets. When he was done explaining planet orbits, he’d also explained how your swing works.”

“My swing works like a planet? No, my swing goes back and forth, but planets go round and round.”

“Jump down and we can draw pictures over there in the sandbox.”

<thump!! scamper!> “I beat you here!”

“Of course you did. OK, what’s your new M-word?”

“Mmmo-MMENN-tummm!”

“Right. Mr Newton’s Law of Inertia is about momentum. It says that things go in a straight line unless something interferes. It’s momentum that keeps your swing going.”

“B-u-u-t, I wasn’t going in a straight line, I was going in part of a circle.”

“Good observing, Teena, that’s exactly right. Mr Newton’s trick was that a really small piece of a circle looks like a straight line. Look here. I’ll draw a circle … and inside it I’ll put a triangle… and between them I’ll put a hexagon — see how it has an extra point halfway between each of the triangle’s points? — and up top I’ll put the top part of whatever has 12 sides. See how the 12-thing’s sides are almost on the circle?”

“Ooo, that’s pretty! Can we do that with a square, too?”

“Sure. Here’s the circle … and the square … and an octagon … and a 16-thing. See, that’s even closer to being a circle.”

“Ha-ha — ‘octagon’ — that’s like ‘octopus’.”

“For good reason. An octopus has eight arms and an octagon has eight sides. ‘Octo-‘ means ‘eight.’ So anyway, Mr Newton realized that his momentum law would apply to something moving along that tiny straight line on a circle. But then he had another idea — you can move in two directions at once so you can have momentum in two directions at once.”

“That’s silly, Uncle Sy. There’s only one of me so I can’t move in two directions at once.”

“Can you move North?”

“Uh-huh.”

“Can you move East?”

“Sure.”

“Can you move Northeast?”

“Oh … does that count as two?”

“It can for some situations, like planets in orbit or you swinging on a swing. You move side-to-side and up-and-down at the same time, right?”

“Uh-huh.”

“When you’re at either end of the trip and as far up as you can get, you stop for that little moment and you have no momentum. When you’re at the bottom, you’ve got a lot of side-to-side momentum across the ground. Anywhere in between, you’ve got up-down momentum and side-to-side momentum. One kind turns into the other and back again.”

“So complicated.”

“Well, it is. Newton simplified things with revised directions — one’s in-or-out from the center, the other’s the going-around angle. Each has its own momentum. The swing’s ropes don’t change length so your in-out momentum is always zero. Your angle-momentum is what keeps you going past your swing’s bottom point. Planets don’t have much in-out momentum, either — they stay about their favorite distance from the Sun.”

“Earth’s angle-momentum is why we don’t fall in?”

“Yep, we’ve got so much that we’re always falling past the Sun.”

~~ Rich Olcott

Swinging into Physics

A gorgeous Spring day, perfect for taking my 7-year-old niece to the park. We politely say “Hello” to the geese and then head to the playground. Of course she runs straight to the swing set. “Help me onto the high one, Uncle Sy!”

“Why that one, Teena? Your feet won’t reach the ground and you won’t be able to kick the ground to get going.”

“The high one goes faster,”

“How do you know that?”

“I saw some kids have races and the kid on the high swing always did more back-and-forths. Sometimes it was a big kid, sometimes a little kid but they always went faster.”

“Good observing, Sweetie. OK, upsy-daisy — there you are.”

“Now give me pushes.”

“I’m not doing all the work. Tell you what, I’ll give you a start-up shove and then you pump to keep swinging.”

“But I don’t know how!”

“When you’re going forward, lean way back and put your feet up as high as you can. Then when you’re going backward, do the opposite — lean forward and bend your knees way back. Now <hnnnhh!> try it.

<creak … creak> “Hey, I’m doing it! Wheee!”

<creak> “Good job, you’re an expert now.”

“How’s it work, Uncle Sy?”

“It’s a dance between kinetic energy, potential energy and momentum.”

“I’m just a little kid, Uncle Sy, I don’t know what any of those things are.”

“Mmm… Energy is what makes things move or change. You know your toy robot? What happens when its batteries run down?”

“It stops working, silly, until Mommie puts its battery in the charger overnight and then it works again.”

“Right. Your robot needs energy to move. The charger stores energy in the battery. Stored energy is called potential which is like ‘maybe,’ because it’s not actually making something happen. When the robot gets its full-up battery back and you press its GO button, the robot can move around and that’s kinetic energy. ‘Kinetic’ is another word for ‘moving.'”

“So when I’m running around that’s kinetic energy and when I get tired and fall asleep I’m recharging my potential energy?”

“Exactly. You’re almost as smart as your Mommie.”

“An’ when I’m on the swing and it’s moving, that’s kinetic.”

“You’ve got part of it. Watch what’s happening while you swing. Are you always moving?”

<creak … creak> “Ye-e—no! Between when I swing up and when I come down, I stop for just a teeny moment at the top. And I stop again between backing up and going forward. Is that when I’m potential?”

“Sort of, except it’s not you, it’s your swinging-energy that’s all potential at the top. Away from the top you turn potential energy into kinetic energy, going faster and faster until you’re at the bottom. That’s when you go fastest because all your potential energy has become kinetic energy. As you move up from the bottom you slow down because you’re turning your kinetic energy back into potential energy.”

<creak> “Back and forth, potential to kinetic to potential, <creak> over and over. Wheee! Mommie would say I’m recycling!”

“Yes, she would.”

<creak> “Hey, Uncle Sy, how come I don’t stop at the bottom when I’m all out of potential?”

“Ah. What’s your favorite kind of word?”

M-words! I love M-words! Like ‘murmuration‘ and ‘marbles.'”

“Well, I’ve got another one for you — momentum.”

“Oh, that’s yummy — mmmo-MMMENN-tummmm. What’s it mean?”

“It’s about how things that are moving in a straight line keep moving along that line unless something else interferes. Or something that’s standing still will just stay there until something gives it momentum. When we first sat you in the swing you didn’t go anywhere, did you?”

“No, ’cause my toes don’t reach down to the ground and I can’t kick to get myself started.”

“That would have been one way to get some momentum going. When I gave you that push, that’s another way.”

“Or I could wear a jet-pack like Tony Stark. Boy, that’d give me a LOT of momentum!”

“Way too much. You’d wrap the swing ropes round the bar and you’d be stuck up there. Anyway, when you swing past the bottom, momentum is what keeps you going upward.”

“Yay, momentum!” <creak>

~~ Rich Olcott

Schroeder’s Magic Kittycat

“Bedtime, Teena.”

“Aw, Mommie, I had another question for Uncle Sy.  And I’m not sleepy yet anyhow.”

“Well, if we’re just sitting here relaxing, I suppose.  Sy, make your answer as boring as possible.”

“You know me better than that, Sis, but I’ll try.  What’s your question, Teena?”

“You said something once about quantum and Schroeder’s famous kittycat.  Why is it famous?  If it’s quantum it must be a very, very small cat.  Is it magic?”

“???… Oh, Schrödinger’s Cat.  It’s a pretend cat, not a real one, but it’s famous because it’s both asleep and awake.”

“I see what you did there, Sy.”

“Yeah, Sis, but it’s for a good cause, right?”

“But Uncle Sy, how can you tell?  Sometimes Tommie our kittycat looks sound asleep but he’s not really because he can hear when Mommie opens the cat-food can.”

“Schrödinger’s Cat is special.  Whenever he’s awake his eyes are wide open and whenever he’s asleep his eyes are shut.  And he’s in a box.”

“Tommie loves to sit in boxes.”

“Schrödinger’s Cat’s box is sealed tight.  You can’t see into it.”

“So how do you know whether he’s asleep?”

“That was Mr Schrödinger’s point.  We can’t know, so we have to suppose it’s both.  Many people have made jokes about that.  Mr. Schrödinger said the usual interpretation of quantum mechanics is ridiculous and his cat story was his way of proving that.  The cat doesn’t even have to be quantum-small and the story still works.”

“How could it be halfway?  Either his eyes are open or they’re … wait, sometimes Tommie squints, is that it?”

“Nice try, but no.  Do you remember when we were looking at the bird murmuration and I asked you to point to its middle?”

“Oh, yes, and it was making a beautiful spiral.  Mommie, you should have seen it!”

“Were there any birds right at its middle?”

“Um, no-o.  All around the middle but not right there.”

“Birds to the left, birds to the right, but no birds in the middle.  But if I’d I asked you to point to the place where the birds were, you’d’ve pointed to the middle.”

“Uh-huh.”

“You see how that’s like Mr Schrödinger’s cat’s situation?  It’s really asleep or maybe it’s really awake, but if we’re asked for just one answer we’d have to say ‘halfway between.’  Which is silly just like Mr Schrödinger said — by the usual quantum calculation we’d have to consider his cat to be half awake.  That was part of the long argument between Mr Einstein and the other scientist.”

“Wait, Sy, I didn’t hear that part of you two’s conversation on the porch.  What argument was that?”

“This was Einstein’s big debate with Niels Bohr.  Bohr maintained that all we could ever know about the quantum world are the probabilities the calculations yielded.  Einstein held that the probabilities had to result from processes taking place in some underlying reality.  Cat reality here, which we can resolve by opening the box, but the same issue applies across the board at the quantum level.  The problem’s more general than it appears, because much the same issue appears any time you can have a mixture of two or more states.  Are you asleep yet, Sweetie?”

“Nnn, kp tkng.”

“OK.  Entanglement, for instance.  Pretty much the same logic that Schrödinger disparaged can also apply to quantum particles on different paths through space.  Fire off any process that emits a pair of particles, photons for instance.  The wave function that describes both of them together persists through time so if you measure a property for one of them, say polarization direction, you know what that property is for the other one without traveling to measure it.  So far, so good.  What drove Einstein to deplore the whole theory is that the first particle instantaneously notifies the other one that it’s been measured.  That goes directly counter to Einstein’s Theory of Relativity which says that communication can’t go any faster than the speed of light.  Aaand I think she’s asleep.”

“Nice job, Sy, I’ll put her to bed.  We may discuss entanglement sometime.  G’night, Sy.”

“G’night, Sis.  Let me know the next time you do that meatloaf recipe.”

Cat emerging from murmuration~~ Rich Olcott